Why are there various types of film (speed, purposes, etc.)?

Why are there various types of film (speed, purposes, etc.)?

The different speeds of film have to do with how light sensitive the film emulsion is. A portion of the surface of a high-speed film will register exposure to light when only a few particles of light (photons) reach it. In contrast, a low speed film requires more photons per square millimeter to undergo the chemical changes of exposure.

While high speed film can take pictures with less light than low speed film, there is a trade-off. High-speed films are grainier and have less resolution than low speed films. Thus photographs that you would like to enlarge should be taken with relatively slow film.

Is the eye similar to a camera?

Is the eye similar to a camera?

Yes, your eye is exactly like a camera, except that the real image forms on your light sensitive retina rather than on a sheet of film. The lens bends light to a focus on the retina. If you are nearsighted and can only see nearby objects clearly, then your lens is too strong and bends light too much. Light from a distant object focuses before reaching your retina. If you are farsighted and can only see distant objects clearly, then your lens is too weak and bends light too little. Light from a nearby object doesn’t reach a focus by the time it strikes your retina. It would focus beyond your retina, if it could continue on through space.

How does the camera know (measure) what the distance is to the object?

How does the camera know (measure) what the distance is to the object?

Modern cameras use a variety of techniques to find the distance to objects. Some cameras bounce sound off of the objects and time how long it takes for the echo to return. Others observe the central portion of the image (presumably the object) from two vantage points simultaneous and then adjust the angles at which those two observations are made until the images overlap. This rangefinder technique is the one you use to sense distance with your eyes. You view the object through each eye and adjust the angles of view until the two images overlap (in your brain). At that point, you can tell how far away the object is by how crossed or uncrossed your eyes are. A rangefinder camera has two small viewing windows and lenses to look at the object, just as you have two eyes to look at the object. Finally, some cameras don’t really measure the distance to the object but instead adjust the lens until it forms the sharpest possible image. A sharp image has the highest possible contrast while an out-of-focus image will have relatively low contrast. The cameras adjust the lens until the light striking a sensor exhibits maximal contrast (brightest bright spots and darkest dark spots).

How does a video camera work?

How does a video camera work?

There are many parts to this question, so I’ll deal with only two: how the camera forms an image of the scene in front of the camera on its imaging chip and how the camera obtains a video signal from that imaging chip. The first part involves a converging lens—one that bends rays of light toward one another. As the light from a particular spot in the scene passes through the camera’s lens, the lens slows the light down. Because the lens’ surfaces are curved, this slowing process causes the light rays to bend so that they tip toward one another. These rays continue toward one another after they leave the lens and they all meet at a single point on the surface of the camera’s imaging chip. That point on the chip thus receives all the light from only one spot in the scene. Likewise, every point on the imaging chip receives light from one and only one spot in the scene. The lens is forming what is called a “real image”—a pattern of light in space (or on a surface) that is an exact copy of the scene from which the light originated. You can form a real image of a scene on a sheet of paper with the help of a simple magnifying glass. The actual camera lens often contains a number of individual glass or plastic elements, which allow it to bend all colors of light evenly and to adjust the size and brightness of the real image that it forms on the imaging chip.

The second part of this question revolves around the imaging chip. In this chip, known as a “charge-coupled device,” the arriving light particles or “photons” causes electric charge to be transferred into a narrow channel of semiconductor—that is a material that can conduct electricity in a controllable manner. Each photon contains a tiny amount of energy and this energy is enough to move the electric charge into the channel. The imaging chip has row after row of these light-sensitive channels so that the pattern of light striking the chip creates a pattern of charge in its channels. To obtain a video image from these channels, the camera uses an electronic technique to shift the charge through the channels. The camera thus reads the electric charge point-by-point, row-by-row until it has examined the pattern of charge (and thus the pattern of light) on the whole imaging chip. This reading process is just what is needed to build a video signal, since a television also builds its image point-by-point, row-by-row. To obtain a color image, the imaging chip is covered with a tiny pattern of colored filters so that each point on its surface is only sensitive to a certain primary color of light: either red, green, or blue. This sort of color sensitivity mimics that of our own eyes—our retinas respond only to red, green, or blue light, but we see mixtures of those three colors as a much richer collection of colors.

Does your pupil opening and closing have anything to do with it focusing on a mo…

Does your pupil opening and closing have anything to do with it focusing on a more distant object?

The size of your pupil does not depend on the distance to an object. It depends only on how bright the scene in front of you is. But the size of your pupil does affect your ability to focus. When it is relatively dark and your pupil is wide open, the whole lens of your eye is involved in light gathering. Focusing becomes very critical and you have very little depth of focus. Moreover, if your lens isn’t perfect, you will see things as blurry. But when it is bright out and your pupil is small, you are only using the center portion of your lens and everything is in focus. That’s why it is harder to focus at night than during the day. When you squint, you are artificially shrinking the effective diameter of the lens in your eye and increasing your depth of focus. Unfortunately, you are also reducing the amount of light that reaches your eye. If you look through a pinhole in a sheet of paper, you will find everything in focus, although it will appear very dim.

Wouldn’t a laser in laser surgery cut straight through the organ being worked on…

Wouldn’t a laser in laser surgery cut straight through the organ being worked on?

Laser light, like any other light, only travels so far in a material that absorbs it. In surgery, the wavelength of light is chosen so that it is absorbed near enough to the source that it doesn’t damage tissue far from the source. The laser vaporizes nearby material but doesn’t burn holes through people. If the surgeon paused for a long time, the hole being cut would gradually get deeper. But normally, the depth of the cut isn’t very great.

Why is a semi-transparent mirror better than metal and how does it work?

Why is a semi-transparent mirror better than metal and how does it work?

Metal mirrors usually absorb about 5% of the light that strikes them. Thus a fully reflective metal mirror, with a thick layer of aluminum, silver, gold, or some other metal, will typically only reflect about 95% of the light. A partially reflective metal mirror, with a very thin layer of metal, might reflect 50% of the light, transmit 45% of the light, and absorb 5%. That 5% absorption is terrible in a laser because the metal layer will heat up and fall apart. Instead, dielectric (insulator) mirrors are created. These mirrors used layer after layer of perfectly clear insulators (usually metal oxides and metal fluorides) to reflect light. Each time light moves from one of these layers to the next, its speed changes and part of it reflects. The thicknesses of the layers are carefully controlled so that the desired wavelengths are reflected in just the right amounts. Since the layers absorb no light, any light that is not reflected is transmitted. A dielectric mirror might reflect 50% of the light, transmit 50% of the light, and absorb 0%. Since they absorb no light, dielectric mirrors do not heat up in use and work well with even very high-powered lasers.

Why does the laser not create a beam of light that you can see as it travels thr…

Why does the laser not create a beam of light that you can see as it travels through the air to its destination (like a flashlight)?

You can only see light travel across a room if something in the air scatters that light toward you. If there is dust, smoke, or mist in the air, you will see that light pass through it. You will see a flashlight beam scattered by these particles and you will also see a laser beam. In that respect, the two kinds of light are very similar. Some laser beams are so intense that the Rayleigh scattering (the scattering that creates the blue sky) is strong enough to make the beams visible even in perfectly dust-free air. The beams shown in class are not that strong and would only be visible if something in the air scattered their light toward your eyes.

Why are lasers harmful to your eyes?

Why are lasers harmful to your eyes?

You eyes treat the laser light as though it came from a very distant object with a very small size. As a result, your eyes focus all of the laser light to a single tiny spot on your retina because that is where light from a tiny, distant object should go. However, there is a lot of power in the laser light and when all of that power lands on only a few cells at the surface of your retina, it cooks those cells. Its very similar to what happens when you hold a magnifying glass in sunlight and create a white hot spot on a piece of wood. With powerful lasers, damage can be done to your retina very quickly.

What kinds of lasers are used at laser demonstrations? Why and how do they get d…

What kinds of lasers are used at laser demonstrations? Why and how do they get different colors? How do you see the actual beams?

Most of the visible lasers used in light shows are gas lasers: tubes with gas discharges in them that are arranged to produce laser light. The most common gases used in these tubes are argon and krypton. Argon lasers produce green and blue light very nicely, while krypton lasers are best for intense red light. The colors come from the structures of the atoms themselves; the energies of their various electron orbitals. To see the beams, something must scatter the light. If the lasers are intense enough, Rayleigh scattering from the air is enough to make the beams visible. However, a little mist added to the air helps a lot.