What is an interference pattern in lasers?

What is an interference pattern in lasers?

When the wave of light emitted by a laser can follow more than one path to a target, the waves taking the different paths may “interfere” with one another. If the electric field in the wave taking one path is in phase with (always pointing in the same direction as) the wave taking another path, then the two waves will help one another and they will push together on charges in the target. The amount of light reaching the target will be particularly strong. However, if the two waves arrive out of phase with one another (always pointing in opposite directions), then they will cancel one another and the amount of light reaching the target will be particularly weak. Usually a pattern of bright and dark regions appears on an extended target as the waves following different paths alternately interfere constructively (helping one another) and destructively (canceling one another).

Is all light other than lasers incoherent?

Is all light other than lasers incoherent?

Yes, in the sense that the only way to create coherent light is through the use of laser amplification. While it is possible to create coherent radio waves by synchronizing the motion of many charged particles, it is extremely difficult to synchronize the charged particles that emit visible light. (The one exception to this statement is a free electron laser, an exotic device that uses the beam of electrons from a particle accelerator to produce coherent light.) In general, you must use stimulated emission if you want to create coherent light.

How does laser surgery work?

How does laser surgery work?

Lasers are used in medicine in a variety of ways. In surgery, lasers are used mostly as intense sources of heat. They deposit large amounts of power into small areas, vaporizing and “cooking” tissue. Because they produce very local heating, there is no much bleeding from a cut made with a laser scalpel. In some eye surgery, intense pulsed lasers are used and take advantage of the peculiar effects that happen at very high intensities. The most important of these effects is the creation of free charged particles, which reflect and absorb the laser beam. Because it creates free charged particles when it encounters a surface, an intense pulsed laser beam only penetrates a few microns into a surface. The charged particles that it creates prevent it from traveling deeper, even in a clear material. In eyes, that allows surgeons to remove outer layers of tissue without damaging inner layers or the retina beyond.

Why does a fluorescent bulb sometimes appear blue, especially right before it bu…

Why does a fluorescent bulb sometimes appear blue, especially right before it burns out?

I’m not aware of any tendency to change colors as it begins to burn out, but many fluorescent bulbs are relatively blue in color. The phosphor coatings used to convert the mercury vapor’s ultraviolet emission into visible light don’t create pure white. Instead, they create a mixture of different colors that is a close approximation to white light. There are a number of different phosphor mixtures, each with its own characteristic spectrum of light: cool white, deluxe cool white, warm white, deluxe warm white, and others. The cool white bulbs are most energy efficient but emit relatively bluish light. This light gives the bulbs a cold, medicinal look. The warm white bulbs are less energy efficient, but more pleasant to the eye.

Why do mercury lamps without phosphors emit visible light at high pressure? What…

Why do mercury lamps without phosphors emit visible light at high pressure? What are the “forbidden” transitions?

At low pressure, a mercury lamp emits mostly 254-nanometer ultraviolet light. That light is created when an electron in the mercury atom goes from its lowest excited orbital to its ground (normal) orbital. The other wavelengths of light emitted by the low-pressure lamp are weak and widely spaced in wavelength. An electron must sent into a very highly excited orbital in order to emit one of these other wavelengths. But at high pressure, mercury atoms have trouble sending their favorite 254 nanometer light out of the lamp. Whenever one of the atoms emits a particle of 254-nanometer light (moving its electron from the first excited orbital to the ground orbital), another nearby atom absorbs that particle of light (moving its electron from the ground orbital to the first excited orbital). As a result the 254-nanometer light cannot escape from the lamp; it becomes trapped in the mercury gas! Instead, the atoms begin to send their energy out of the lamp by concentrating on radiative transitions between highly excited orbitals and that lowest excited orbital. These wavelengths become more common in the light emission from the lamp as its pressure rises. But some radiative transitions that are forbidden at low pressure (that cannot occur because an electron is not able to move from one particular excited orbital to another particular excited orbital) become allowed at high pressure. Collisions break many of the rules that govern atomic behavior, allowing otherwise forbidden events to occur. In the case of the mercury lamp, collisions at high pressure permit the mercury atoms to emit wavelengths of light that they cannot emit a low pressure when collisions are rare.

Why do many fluorescent lamps blink before they come on?

Why do many fluorescent lamps blink before they come on?

The lamp first heats the filaments in its electrodes red hot so that they begin to emit electrons and then tries to start a discharge across the lamp. If there are not enough electrons leaving the electrodes to sustain a steady discharge, the lamp will blink briefly but will not stay on. The lamp will try again; first heating its filaments and then trying to start the discharge. The lamp may blink several times before the discharge becomes strong enough to keep the electrodes hot and sustain the discharge.

Why do fluorescent tubes explode if broken (is it the compression of the gas)?

Why do fluorescent tubes explode if broken (is it the compression of the gas)?

Fluorescent tubes operate at very low pressure; roughly 1/1000th of an atmosphere. They do not explode when broken; they implode. The atmospheric pressure surrounding the tube crushes it as soon as it begins to crack. The tube shape of a typical fluorescent tube is chosen because it can withstand the enormous compressive forces of the atmosphere better than most other shapes.

Why do fluorescent emissions of light not produce more heat?

Why do fluorescent emissions of light not produce more heat?

When an atom is excited by a collision and then emits energy as light, it converts most of the collision energy into light. Thus the gas in a fluorescent lamp experiences many collisions but emits most of the collision energy as light. The gas becomes slightly hot, but not nearly as hot as the filament of an incandescent bulb. The electrical energy arrives at the fluorescent bulb as a current of charged particles and most of this energy leaves the bulb as light, without ever becoming heat. However the electrical energy arriving at an incandescent bulb becomes heat first and then becomes light. The conversion of electrical energy to heat dramatically reduces the bulb’s ability to emit visible light efficiently.

Where does the extra energy go after ultraviolet light goes through the phosphor…

Where does the extra energy go after ultraviolet light goes through the phosphor coating? Is it lost as heat?

Yes. The extra energy is converted into heat by the phosphors. Their electrons absorb the light energy, convert some of that energy into heat, and then reemit the light. Since the new light contains less energy per particle (per photon) than the old light, it appears as visible rather than ultraviolet light.