Many of the new cordless phones operate at 2.4GHz like a microwave oven. Are we …

Many of the new cordless phones operate at 2.4GHz like a microwave oven. Are we microwaving our ears when we use them, or is the wattage so small it doesn’t affect us? – R

As far as anyone has been able to determine so far, the wattage is so small that this microwave radiation doesn’t affect us. Not all radiations are the same, and radio or microwave radiation is particularly nondestructive at low intensities. It can’t do direct chemical damage and at low wattage can’t cause significant RF (radio frequency) heating. At present, there is thus no plausible physical mechanism by which these phones can cause injury. I don’t think that one will ever be found, so you’re probably just fine.

How does a paper towel absorb water?

How does a paper towel absorb water?

Paper towels are made out of finely divided fibers of cellulose, the principal structural chemical in cotton, wood, and most other plants. Cotton is actually a polymer, which like any other plastic is a giant molecule consisting of many small molecules linked together in an enormous chain or treelike structure. The small molecules or “monomers” that make up cellulose are sugar molecules. We can’t get any nutritional value out of cellulose because we don’t have the enzymes necessary to split the sugars apart. Cows, on the other hand, have microorganisms in their stomachs that produce the necessary enzymes and allow the cows to digest cellulose.

Despite the fact that cellulose isn’t as tasty as sugar, it does have one important thing in common with sugar: both chemicals cling tightly to water molecules. The presence of many hydroxyl groups (-OH) on the sugar and cellulose molecules allow them to form relatively strong bonds with water molecules (HOH). This clinginess makes normal sugar very soluble in water and makes water very soluble in cellulose fibers. When you dip your paper towel in water, the water molecules rush into the towel to bind to the cellulose fibers and the towel absorbs water.

Incidentally, this wonderful solubility of water in cellulose is also what causes shrinkage and wrinkling in cotton clothing when you launder it. The cotton draws in water so effectively that the cotton fibers swell considerably when wet and this swelling reshapes the garment. Hot drying chases the water out of the fibers quickly and the forces between water and cellulose molecules tend to compress the fibers as they dry. The clothes shrink and wrinkle in the process.

Why do things such as sneakers, T-shirts, and nailpolish change color in the sun…

Why do things such as sneakers, T-shirts, and nailpolish change color in the sun? The only explanations I’ve found simple state that the molecules get excited in the sun.

Sunlight consists not only of light across the entire visible spectrum, but of invisible infrared and ultraviolet lights as well. The latter is probably what is causing the color-changing effects you mention.

Ultraviolet light is high-energy light, meaning that whenever it is emitted or absorbed, the amount of energy involved in the process is relatively large. Although light travels through space as waves, it is emitted and absorbed as particles known as photons. The energy in a photon of ultraviolet light is larger than in a photon of visible light and that leads to interesting effects.

First, some molecules can’t tolerate the energy in an ultraviolet photon. When these molecules absorb such an energetic photon, their electrons rearrange so dramatically that the entire molecule changes its structure forever. Among the organic molecules that are most vulnerable to these ultraviolet-light-induced chemical rearrangements are the molecules that are responsible for colors. The same electronic structural characteristics that make these organic molecules colorful also make them fragile and susceptible to ultraviolet damage. As a result, they tend to bleach white in the sun.

Second, some molecules can tolerate high-energy photons by reemitting part of the photon’s energy as new light. Such molecules absorb ultraviolet or other high-energy photons and use that energy to emit blue, green, or even red photons. The leftover energy is converted into thermal energy. These fluorescent molecules are the basis for the “neon” colors that are so popular on swimwear, in colored markers, and on poster boards. When you expose something dyed with fluorescent molecules to sunlight, the dye molecules absorbs the invisible ultraviolet light and then emit brilliant visible light.

How do people measure g-forces? I have read articles about roller coasters that …

How do people measure g-forces? I have read articles about roller coasters that report specific numbers, such as 3 g’s. How are these numbers obtained? – T

Whenever you accelerate, you experience a gravity-like sensation in the direction opposite that acceleration. Thus when you accelerate to the left, you feel as though gravity were pulling you not only downward, but also to the right. The rightward “pull” isn’t a true force; it’s just the result of your own inertia trying to prevent you from accelerating. The amount of that rightward “pull” depends on how quickly you accelerate to the left. If you accelerate to the left at 9.8 meters/second2, an acceleration equal in amount to what you would experience if you were falling freely in the earth’s gravity, the rightward gravity-like sensation you feel is just as strong as the downward gravity sensation you would feel when you are standing still. You are experiencing a rightward “fictitious force” of 1 g. The g-force you experience whenever you accelerate is equal in amount to your acceleration divided by the acceleration due to gravity (9.8 meters/second2) and points in the direction opposite your acceleration. Often the true downward force of gravity is added to this figure, so that you start with 1 g in the downward direction when you’re not accelerating and continue from there. If you are on a roller coaster that is accelerating you upward at 19.6 meters/second2, then your total experience is 3 g’s in the downward direction (1 g from gravity itself and 2 g’s from the upward acceleration). And if you are accelerating downward at 9.8 meters/second2, then your total experience is 0 g’s (1 g downward for gravity and 1 g upward from the downward acceleration). In this last case, you feel weightless-the weightlessness of a freely falling object such as an astronaut, skydiver, or high jumper.

Note added: A reader pointed out that I never actually answered the question. He’s right! So here is the answer: they use accelerometers. An accelerometer is essentially a test mass on a force sensor. When there is no acceleration, the test mass only needs to be supported against the pull of gravity (i.e., the test mass’s weight), so the force sensor reports that it is pushing up on the test mass with a force equal to the test mass’s weight. But once the accelerometer begins to accelerate, the test mass needs an additional force in order to accelerate with the accelerometer. The force sensor detects this additional force and reports it. If you carry an accelerometer with you on a roller coaster, it will report the force it exerts on the test mass at each moment during the trip. A recording device can thus follow the “g-forces” throughout the ride.

As far as how accelerometers work, modern ones are generally based on tiny mechanical systems known as MEMS (Micro-Electro-Mechanical Systems). Their test masses are associated with microscopic spring systems and the complete accelerometer sensor resides on a single chip.

In regards to your discussion of superheating water in a microwave oven, I’ve fo…

In regards to your discussion of superheating water in a microwave oven, I’ve found that it occurs most often when (1) I reheat water that has been heated before and (2) I heat water that has sat in the cup overnight. Why does that seem to reduce the number of seed bubbles? – JS

Both processes allow dissolved gases to escape from the water so that they can’t serve as seed bubbles for boiling. When you heat water and then let it cool, the gases that came out of solution as small bubbles on the walls of the container escape into the air and are not available when you reheat the water. When you let the water sit out overnight, those same dissolved gases have time to escape into the air and this also reduces the number and size of the gas bubbles that form when you finally heat the water. Without those dissolved gases and the bubbles they form during heating it’s much harder for the steam bubbles to form when the water reaches boiling. The water can then superheat more easily.

How do you calculate how much weight a helium balloon can lift? – C & S

How do you calculate how much weight a helium balloon can lift? – C & S

A helium balloon experiences an upward force that is equal to the weight of the air it displaces (the buoyant force on the balloon) minus its own weight. At sea level, air weighs about 0.078 pounds per cubic foot, so the upward buoyant force on a cubic foot of helium is about 0.078 pounds. A cubic foot of helium weighs only about 0.011 pounds. The difference between the upward buoyant force on the cubic foot of helium and the weight of the helium is the amount of extra weight that the helium can lift, which is about 0.067 pounds per cubic foot. To lift a 100 pound person, you’ll need about 1500 cubic feet of helium in your balloon.

I am planning to do an experiment with a microwave oven and want to videotape it…

I am planning to do an experiment with a microwave oven and want to videotape it. I want to operate the microwave oven with the door open. Will I be safe if I’m 15 feet away? Will opening the door nullify the “chamber” effect that the oven normally has? – E

Don’t operate the oven open. You’re just asking for trouble. The oven will emit between 500 and 1100 watts of microwaves, depending on its rating, and you don’t need to be exposed to such intense microwaves. The chamber effect is important; without the sealed chamber, the microwaves pass through the food only about once before heading off into the kitchen and you. The food won’t cook well and you’ll be bathed in the glow from a kilowatt source of invisible “light.”

Imagine standing in front of a 10-kilowatt light bulb (which emits about 1 kilowatt of visible light and the rest is other forms of heat) and then imagine that you can’t see light at all and can only feel it when it is causing potential damage. Would you feel safe? Your video camera won’t enjoy the microwave exposure, either.

If you want to videotape your experiments without having to view them through the metal mesh on the door, you can consider drilling a small hole in the side of the cooking chamber. If you keep the hole’s diameter to a few millimeters, the microwaves will not leak out. Then put one of the tiny inexpensive video cameras that widely available a centimeter or so away from that hole. You should get a nice unobstructed view of the cooking process without risking life and limb.

I thought microwave ovens were sealed shut to keep the waves inside. Why then ca…

I thought microwave ovens were sealed shut to keep the waves inside. Why then can you smell the food as it is being cooked? – E

The cooking chamber of a microwave oven has mesh-covered holes to permit air to enter and exit. The holes in the metal mesh are small enough that the microwaves themselves cannot pass through and are instead reflected back into the cooking chamber. However, those holes are large enough that air (or light in the case of the viewing window) can pass through easily. Sending air through the cooking chamber keeps the cooking chamber from turning into a conventional hot oven and it carries food smells out into the kitchen.

Which is more economical: operating our air conditioner at 75 °F or operatin…

Which is more economical: operating our air conditioner at 75 °F or operating it at 78 °F and putting fans in front of the vents? – T

When you put fans in front of the vents, you are probably causing the air conditioner to pump roughly the same amount of heat out of the room air as it would at 75 °F without the fans. As a result, the fans probably aren’t making the air conditioner work less and aren’t saving much electricity. In fact, the fans themselves consume electricity and produce heat that the air conditioner must then remove, so in principle the fans are a waste of energy.

However, if the fans are directing the cold air in a way that makes you more comfortable without having to cool all the room air or if the fans are creating fast moving air that cools you via evaporation more effectively, then you may be experiencing a real savings of electricity.

To figure out which is the case, you’d have to log the time the air conditioner cycles on during a certain period while the fans were off and the thermostat set to 75 °F and then repeat that measurement during a similar period with the fans on and the thermostat set to 78 °F. If the fans significantly reduce the units runtime while leaving you just as comfortable, then you’re saving power.

I’m rewiring a lamp and didn’t make sure that the silver and copper wires in the…

I’m rewiring a lamp and didn’t make sure that the silver and copper wires in the cord matched the screws on the bulb socket. What will happen if I got it wrong? – L

The bulb will operate perfectly well, regardless of which way you connected the lamp’s two wires. Current will still flow in through one wire, pass through the bulb’s filament, and return to the power company through the other wire. The only shortcoming of reversing the connections is that you will end up with the “hot” wire connected to the outside of the socket and bulb, rather than to the central pin of the socket and bulb. That’s a slight safety issue: if you touch the hot wire with one hand and a copper pipe with the other, you’ll get a shock. That’s because a large voltage difference generally exists between the hot wire and the earth itself.

In contrast, there should be very little voltage difference between the other wire (known as “neutral”) and the earth. In a properly wired lamp, the large spade on the electric plug (the neutral wire) should connect to the outside of the bulb socket. That way, when you accidentally touch the bulb’s base as you screw it in or out, you’ll only be connecting your hand to the neutral wire and won’t receive a shock. If you miswire the lamp and have the hot wire connected to the outside of the socket, you can get a shock if you accidentally touch the bulb base at any time.