Why does a refrigerator light last so long?
The life of an incandescent bulb depends almost exclusively on how many hours its filament has been hot. Since the bulb in a refrigerator is only on for a few minutes a day, it lasts for many years.
The life of an incandescent bulb depends almost exclusively on how many hours its filament has been hot. Since the bulb in a refrigerator is only on for a few minutes a day, it lasts for many years.
Regular (incandescent) light bulbs create light with a hot filament. This light is relatively reddish and contains very little blue, violet, or ultraviolet light. Since it comes from a hot, thermal source, this light covers all the wavelengths from infrared to the green and blue range of the spectrum continuously and smoothly, although its intensity peaks in the red and orange range of the spectrum. Fluorescent lights, on the other hand, create light through the fluorescence of atoms, molecules, and solids. The light is not created by hot materials so it contains certain regions of the spectrum, often including blue and violet light. Depending on the exact make-up of the fluorescent lamp, this light may include wavelengths that are particularly important to a plant’s metabolic processes.
When they’re operating, halogen bulbs become extremely hot, so you certainly wouldn’t want to touch them then. But even when a bulb is cool, touching it would deposit greases and salts from your skin onto its surface. The aluminosilicate glass used in the lamp’s envelope would be weakened when these salts are baked into the glass during the lamp’s operation and the greases would scorch and darken the bulb’s surface.
For a given type of light bulb, the higher wattage bulbs are more energy efficient. Each light bulb has some “overhead” of wasted power that goes into heating the supporting structure and glass envelope. The higher wattage bulbs produce a little more light per watt of power. But not all types of bulbs are equally efficient. Long life bulbs are the least energy efficient because they run cooler than normal bulbs. The filament lasts a long time, but wastes more power producing infrared light. Some “energy miser” bulbs aren’t as good as normal bulbs. They may have lower wattages (typically 55 W instead of 60 W or 90 W instead of 100 W), but they actually produce significantly less light and thus consume more watts of power for each unit of light they produce. The most efficient incandescent bulbs are halogen lamps. These lamps, with their chemical recycling process, run substantially hotter than normal bulbs and produce more light per watt. They also last longer than normal light bulbs. They also produce whiter light (less red) and are just plain better bulbs than normal light bulbs. They cost more money up front, but it’s worth it in most cases.
The lamp has four switch positions: off, filament 1 on, filament 2 on, and both filaments on. The bulb has three electrical connections to its filaments. One contact delivers electrical power to filament 1, another contact delivers electrical power to filament 2, and the third contact returns electricity from both filaments to the power plant. The switch carefully controls the flow of electricity to the two filaments so that at the low light setting, only the small filament is on, at the medium setting, only the large filament is on, and at the high setting, both filaments are on.
Unfortunately, there is not much that can be done to increase the efficiency of an incandescent bulb. It emits light by creating a very hot filament. Some of the filament’s heat is emitted as visible light but most ends up as hot air or infrared light (which you cannot see). There are tricks used to increase the bulb’s visible light output slightly (e.g. heating the filament hotter as in a halogen bulb or reducing the heat transport in the bulb gas as in a krypton bulb), but mostly there is nothing that can be done. Glass is about the best material for a bulb: it’s clear and a relatively poor conductor of heat.
A normal incandescent lamp contains a double-wound tungsten filament inside a gas-filled glass bulb. By “double-wound”, I mean that a very fine wire is first wound into a long, thin spiral and then this spiral is again wound into a wider spiral. While the final filament looks about 1 or 2 centimeters long, it actually contains about 1 meter of fine tungsten wire. When the bulb is on, an electric current flows through the filament from one end to the other. The electrons making up this current carry energy, both in their motion and in the forces that they exert on one another. As they flow through the fine tungsten wire, these electrons collide with the tungsten atoms and transfer some of their energy to those tungsten atoms. The tungsten atoms and the filament become extremely hot, typically about 2500° Celsius. Tungsten wire is used because it tolerates these enormous temperatures without melting and because it resists sublimation longer than any other material. Sublimation is when atoms “evaporate” from the surface of a solid. The gas inside the bulb is there to slow sublimation and extend the life of the filament.
Once the filament is hot, it tends to transfer heat to its colder surroundings. While much of its heat leaves the filament via convection and conduction in the gas and glass bulb, a significant fraction of this heat leaves the filament via thermal radiation. For any object that is hotter than about 500° Celsius, some of this thermal radiation is visible light and for an object that is about 2500° Celsius, about 10% is visible light. The light that you see from the bulb is the visible portion of its thermal radiation. However, most of the filament’s thermal radiation is invisible infrared light. While you can feel this infrared light warming your hand, you can’t see it. Because only about 80% of the electric power delivered to the bulb becomes thermal radiation and only about 12% of that thermal radiation is visible, an incandescent light bulb is only about 10% energy efficient. Other types of lamps, including fluorescent and gas discharge lamps, are much more energy efficient.
A heat-seeking missile studies the infrared light coming toward it from the sky in front of it. It uses a lens to form a real image of that light on an array of infrared sensors. If there is a hot object in front of the missile, that object will emit more infrared light than its surroundings and the missile’s lens will form a bright image of the hot object on one of the infrared sensors. If the bright image falls on the central sensor, the missile will do nothing—it will flight straight ahead. But if the bright image falls on one of the side sensors, the missile will turn. It will turn by deflecting its rocket exhaust so that the missile begins to rotate in flight. As the missile rotates, the image of the hot object will move from one sensor to the next and it will eventually fall on the central sensor. At that point, the missile will stop turning and will flight straight ahead. Since the missile automatically turns to head toward the hot object, it will eventually fly right into the hot object and explode. A radar-seeking missile will do that same things, except that it will look for an object that is emitting lots of microwaves (radar), rather than lots of infrared light. A radar-guided missile is much more complicated, since it must first emit a burst of microwaves and then analyze the reflected microwaves to look for something to fly toward. Many laser-guided missiles are just like heat-seeking missiles except that they look for an object that is reflecting a laser beam. The people who fire the missile simply illuminate the target with a bright laser beam and the missile flies directly toward the laser spot on the target.
Since light carries energy with it, something must provide that energy. However, the energy doesn’t have to come from electric power. Since objects emit visible thermal radiation when they have temperatures above about 500 C, anything that heats an object to high temperatures will make light. But light can also be made without heat. There are many ways to convert electric energy into light without making anything hot (for example, a neon sign or a light-emitting diode). But you ask about making light with electricity. The next best choice is light-emitting chemical reactions, such as those used in light sticks (liquid-filled plastic sticks that you bend to activate and which then glow bright green for about 12 hours). However, such reactions don’t produce all that much light and they consume the chemicals fairly quickly. If you are trying to produce large amounts of light without electric power, I’m afraid that you’ll have to burn sometime. That’s what people did before 1879 and the electric lamp.
Since turning an incandescent bulb on and off doesn’t shorten the life of its filament significantly, you do well to turn it off whenever possible. The same isn’t true of a fluorescent tube—turning it on ages its filaments significantly (due to sputtering processes) so you shouldn’t turn a fluorescent lamp off if you plan to restart it in less than about 1 minute.