With a pulley of 5 strings, why is each string experiencing 10 N of force and no…

With a pulley of 5 strings, why is each string experiencing 10 N of force and not 2 N apiece (when you pull on the string with 10 N of force)?

When you pull on the string with a 10 N force, you create 10 N of tension in that string. If there is less tension anywhere in the string, then that portion of the string will accelerate toward the side with more tension. That’s why the tension in each string of a multiple pulley is 10 N when you pull on its loose end with a force of 10 N. The 5 strings are really just parts of the same string and that string has to have 10 N of tension in it.

Why do many buses use air brakes instead of hydraulic brakes?

Why do many buses use air brakes instead of hydraulic brakes?

As you have noticed, buses, trucks, and trains often use air as the hydraulic fluid in their braking systems. That’s because air is cheap and non-toxic, so that spilling it isn’t a problem. While air’s compressibility makes it a bit more complicated to work with than a liquid hydraulic fluid, it still works well in power braking systems.

What is the difference between a multiple pulley system in which the string you …

What is the difference between a multiple pulley system in which the string you pull on comes down from the top pulley and the one in which the string you pull on comes up from the bottom pulley?

When the string you pull on comes down from the top pulley, it doesn’t exert its tension on the thing being lifted so it doesn’t count when add up the strings. But when the string you pull on comes up from the bottom pulley, that string is also helping to lift the object. That string does count. Thus if the multiple pulley has 5 segments going up and down between the two pulleys and one more segment going up to your hand, the total number of segments lifting the object is 6 and that object experiences an upward force equal to 6 times the tension in the string.

If you pulled on the bottom of a multiple pulley while an object was hanging fro…

If you pulled on the bottom of a multiple pulley while an object was hanging from the end of the multiple pulley’s rope, would that object feel heavier than it really is?

Yes. If there were 5 segments in the multiple pulley, then you would have to pull down on the bottom of the multiple pulley with a force that was 5 times the magnitude of the object’s weight in order to lift the object at constant velocity. But the object would also rise 5 times as fast as the end of the multiple pulley would descend.

How does a jackhammer work?

How does a jackhammer work?

A jackhammer (or pneumatic hammer) uses compressed air to drive a metal piston up and down inside a cylinder. Each time the piston nears the top of the cylinder, it opens a valve that allows compressed air to flow above it and push it downward. Each time the piston reaches the bottom of the cylinder, it opens a valve that allows compressed air to flow below it and push it upward. Thus the compressed air makes the piston shuttle up and down very rapidly.

But while the piston rebounds gently from a cushion of air at the top of the cylinder, it collides suddenly with a metal bar at the bottom of the cylinder. That metal bar is the top end of the drill bit that the jackhammer uses to cut into pavement. Each time the piston moves downward, it pounds the drill bit a little farther into the pavement. The enormous force that pushes the bit into cement comes from the enormous force needed to stop the descending piston and to accelerate it upward. The drill bit pushes up on the piston very hard and the piston pushes down on the drill bit very hard. These two forces are equal and opposite, as they must be (Newton’s third law of motion.) The piston ends up moving upward and the drill bit ends up moving downward.

Why is it easier for you to make sharp turns more quickly when your center of gr…

Why is it easier for you to make sharp turns more quickly when your center of gravity is over the handle bar?

The force that causes you to turn is friction between the front wheel and the ground. When you turn left, friction pushes the front wheel left and you turn left. By putting all of your weight over the front wheel, you accomplish two things. First, you increase the maximum static frictional force between the ground and the front wheel. You push them together harder so that they are less likely to slide (skid). Second, you make it easier for that sideways friction force to accelerate you; the force acts closer to your body and more directly on you. There are fewer torques on the bicycle that might cause it to skid about on either the front or rear wheel.

Why do the front brakes of a bike provide more braking power than the rear brake…

Why do the front brakes of a bike provide more braking power than the rear brakes, assuming both are applied with equal pressure?

When you apply brakes on a bicycle, you make it harder for the wheels to turn. The ground must then exert backward frictional forces on the wheels to keep them turning and it is these backward frictional forces that slow the bicycle’s forward motion. But the forces that the ground exerts on the bottoms of the wheels also produces a torque on the bicycle about its center of mass—the whole bicycle has a tendency to begin rotating. Fortunately, the bicycle rarely actually rotates—if it did, you would fly forward over the front wheel of the bicycle. But this tendency to rotate during braking pushes the bicycle’s front wheel downward onto the pavement and lifts the bicycle’s back wheel upward off the pavement. The added pressure between the front wheel and the pavement improves traction there and makes the front wheel particularly effective for braking. The loss of pressure between the back wheel and the pavement reduces traction there and makes the back wheel particularly ineffective for braking. In fact, it’s easy to begin fishtailing as the rear wheel loses traction completely.

Please explain the advantage of air tires with less mass.

Please explain the advantage of air tires with less mass.

The rim of the wheel travels at a different speed from the rest of the bicycle. The top of the wheel heads forward faster than the bicycle, while the bottom of the wheel heads forward more slowly than the bicycle. But because kinetic energy is proportional to the square of speed, the increase in the top of the wheel’s energy caused by its increased speed more than makes up for the decrease in the bottom of the wheel’s energy caused by its reduced speed. The overall result is that the wheel rim has twice as much kinetic energy as it would have if it were simply sliding forward without turning. This fact is important because it means that you want as little mass in the wheel rim as possible. Every kilogram there counts double when you are trying to start up from rest. By putting air inside the tire, rather than rubber, you reduce the mass at the wheel rim and make the bicycle easier to start.

Is there a difference in the types of handles of a bike? On some bikes, there is…

Is there a difference in the types of handles of a bike? On some bikes, there is the (upright) handlebar and on some the (drop) handlebar. Is there a purpose?

The shape of the handlebar determines your riding position. The upright position is generally more comfortable but, by sitting you upright, it increases the pressure drag you experience. Drop handlebars lower your body and make you more aerodynamic, but that position isn’t as comfortable.

How is it that the torques cancel when you turn a bicycle?

How is it that the torques cancel when you turn a bicycle?

During a turn, you lean the bicycle into the turn. For example, when you turn left, you lean the top of the bicycle toward the left. The result is that you (and the bicycle) experience two torques. First, the support force from the ground tries to rotate you one direction—it tries to make your head go left and your feet go right. Second, friction from the ground, which is making you and the bicycle accelerate toward the left as part of the turn, tries to rotate you in the opposite direction—it tries to make your head go right and your feet go left. These two torques will cancel one another if you are leaning just the right amount. As a result, the bicycle doesn’t undergo angular acceleration and you don’t tip over.