Why does dust settle on the moving blades of a fan?

Why does dust settle on the moving blades of a fan?

As the air flows across the blades of a fan, the dust particles in it occasionally pierce through the airflow and hit the blades. The same sort of process occurs when a bug hits the windshield of a car; the bug would normally follow the airflow but its inertia prevents it from moving out of the way quickly enough and it hit. Once a dust particle hits the fan blades, there isn’t much to remove it. The air moves remarkably slowly right at the surface of the fan because that surface layer of air experiences lots of viscous drag. Even though the air is moving swiftly only a few millimeters away, the air right on the fan blade is almost stationary. Thus the dust can cling to the blade indefinitely.

When you suspended the Ping-Pong ball in the stream of air from the pipe, why di…

When you suspended the Ping-Pong ball in the stream of air from the pipe, why did the ball spin? The same thing happened to the two flat pieces of plastic that were held together when air flowed out between them.

The Ping-Pong ball spun because the viscous drag forces it experienced weren’t equal on all sides. As we’ll see shortly, there are a variety of different drag forces and they can act at different locations on an object. In the case of viscous drag, it acts locally at each point where air slides across the surface of the object. Since the airflow from the pipe wasn’t perfectly uniform, the air swept past the ball faster in some places than it did in others. These differences in airspeed became most significant when the ball began to drift away from the airstream—the sudden increase in airspeed on the side of the ball nearest the center of the airstream is what created the low pressure that allowed the surrounding air to push the ball back toward the center of the airstream. But minor differences in airspeed also exerted unbalanced torques on the ball and caused it to spin. Similar flow imperfections between the two plates created differences in viscous drag and exerted torques on the two plates. That’s why they began to spin around slightly.

What is drag force?

What is drag force?

A drag force is a force that opposes an object’s motion through a fluid. Like sliding friction, drag always pushes the object in the direction opposite its motion though the fluid. Air resistance is really a drag force. You feel drag pushing you backward when you ride a bicycle fast. You also feel drag when you hold your hand out the window of a fast-moving car—it pushes your hand toward the back of the car and in the direction opposite your hand’s motion through the air. If you were to fall downward, you would feel a drag force upward, in the direction opposite your motion through the air. And leaves experience a drag force when wind blows on them—pushing them downwind and in the direction opposite their motion through the air (they are moving upwind through the air, so it pushes them downwind). Incidentally, the object pushes back on the fluid with drag force, too, and this force on the fluid pushes the fluid in the direction opposite its motion past the object. This force tends to stop moving fluids and to turn their kinetic energies into thermal energy.

Suppose that you fall out of a plane about 30 seconds after your parachute pack …

Suppose that you fall out of a plane about 30 seconds after your parachute pack fell out. Is it really possible to catch up to your parachute pack and save yourself?

The answer depends on how high the plane was flying and just how much air resistance the pack experiences as it falls. After a few seconds of falling, an object reaches a terminal velocity—it stops accelerating downward. That’s because the upward force that air resistance exerts on it grows stronger as its downward velocity increases. Eventually, the upward force it experiences exactly balances its downward weight and it has no net force on it—it doesn’t accelerate. For a person, this terminal velocity ranges from about 100 mph to 200 mph, depending on the person’s shape. Curling into a compact ball should allow you to reach a relatively high terminal velocity of 200 mph. Since the parachute pack is relatively light but has substantial surface area for the wind to push against, it probably has a lower terminal velocity of say, 100 mph. This arrangement would allow you to approach the pack at a relative velocity of 100 mph. In order to actually overtake the pack, you’ll still need some time, so the higher the plane was when you started, the better your chances are. Since the pack has a 30 second head start and descends at 100 mph, it will be about 0.83 miles below you when you leave the plane. You’ll catch up to it 30 seconds later, during which time you will have dropped a total of 1.67 miles. Thus in principle, you could catch the pack so long as the plane’s altitude was more than about 1.67 miles. To allow time to put the pack on, for the parachute to open, and for your terminal velocity to then become low enough to avoid injury, you’d better have the plane at more than about 2.5 miles. Still, this doesn’t sound like a fun experiment.

How does the fan in a vacuum cleaner boost the pressure back up so that the air …

How does the fan in a vacuum cleaner boost the pressure back up so that the air flowing through the vacuum cleaner the air will go back into the room?

The fan is a rotating assembly of ramps. As the ramps move, they sweep the air from one side of the fan to the other and do work on that air. The air either accelerates as the fan blades spin past, or its pressure builds up. Either way, its total energy increases. The fan can take low-pressure air from one side and whisk it over to the other side where the pressure is higher. It can push air against the natural direction of flow (from high pressure to low pressure). It’s essentially a pump for air.

How does an airbrush work? Can you briefly explain it again.

How does an airbrush work? Can you briefly explain it again.

In an airbrush, slow-moving but high-pressure air from a hose is allowed to pass through a very narrow channel. As the air enters this channel, it speeds up and its pressure drops—it has exchanged its pressure potential energy for kinetic energy. The channel is so narrow and the air moves so quickly through it that the pressure inside the channel drops below atmospheric pressure! There is a tiny pipe that attaches to this channel at right angles and that dips into a bottle of paint. As the pressure inside the channel falls below atmospheric pressure, the atmospheric pressure in the paint bottle pushes the paint toward the channel. The paint begins flowing into the channel and it collides with the high-speed stream of air. The paint is ripped into tiny droplets and these droplets travels through the channel along with the air. As the air emerges from the narrow channel, its pressure rises and it slows down, but it still moves fast enough to carry the paint droplets to the object that’s being painted.

How does a water aspirator pump work?

How does a water aspirator pump work?

The water aspirator pump is essentially a pipe with a narrowing in it. As water flows through that narrowing, it speeds up and its pressure drops—it’s exchanging its pressure energy for kinetic energy. A tiny opening in the side of the narrowing allows water or air to enter the high-speed flow. Since the pressure in that high-speed flow is very low, atmospheric pressure pushes fluids through the tiny opening and into the flow. The flow pumps fluids through the opening and into the water stream. If you connect a hose to the tiny opening, you can suck chemicals up the hose and into the water stream.

For aerosol sprays such as Lysol, are they essentially creating “dustlike” par…

For aerosol sprays such as Lysol, are they essentially creating “dustlike” particles that float in the air?

Yes, except that the word “float” isn’t what you really mean. An aerosol is a suspension of fine solid or liquid particles in a gas. What holds those particles up against their downward weights isn’t the buoyant force—these particles are much more dense than the gas that surrounds them. Instead, it’s viscous drag. When the particles begin to fall downward through the gas, they experience such large upward viscous drag forces that they reach terminal velocity at only about 1 millimeter-per-second. The slightest breeze carries the particles with it so that they rarely have a chance to settle to the floor because of gravity. In an aerosol spray, the particles are carried forward by the gas emerging from the bottle and they hit the surfaces in front of the bottle.

Why is viscosity important in motor oil for today’s high revving engines?

Why is viscosity important in motor oil for today’s high revving engines?

If the oil in your car is has too little viscosity, it will easily flow out of the gaps between surfaces and will not lubricate them well. Those surfaces will experience sliding friction and wear. If the oil has too much viscosity, it will waste the engine’s energy by opposing motion and turning work into thermal energy. Modern motor oils have carefully adjusted viscosities that balance the two problems. Since temperature affects viscosity (e.g., hot molasses has less viscosity than cold molasses), motor oils add chemicals that stabilize their viscosities over wide temperature ranges.

Why does a hose squirt further when you cover the hole with your thumb?

Why does a hose squirt further when you cover the hole with your thumb?

The water entering the hose has a certain amount of energy per liter. That energy can be in one of three forms: pressure potential energy, gravitational potential energy, or kinetic energy. If you let it flow freely through the hose, most of that energy will become kinetic energy and the water will move quickly through the hose. But it will encounter frictional effects as it slides past the walls of the hose (its viscosity participates here) and it will convert much of its kinetic energy into thermal energy by the time it leaves the hose. However, if you pinch off the flow with your thumb, the water won’t be able to convert its energy into kinetic form as it enters the hose. Most of the energy will remain as pressure potential energy. The water will move slowly through the hose and it will experience relatively little energy loss to frictional effects. Most of the energy will remain by the time the water reaches your thumb. Then, as the water flows past your thumb to the outside air, its pressure will drop suddenly and its energy will become kinetic energy. The water will spray out at very high speed.