Is it true that a person in space doesn’t get as old as if he was on the earth?

Is it true that a person in space doesn’t get as old as if he was on the earth? — ASB, Chiapas, Mexico

The effects you are referring to are extremely subtle, so no one will ever notice them in an astronaut. But with ultraprecise clocks, it’s not hard to see strange effects altering the passage of time in space. There are actually two competing effects that alter the passage of time on a spaceship—one that slows the passage of time as a consequence of special relativity and the other that speeds the passage of time as a consequence of general relativity.

The time slowing effect is acceleration—a person or clock that takes a fast trip around the earth and then returns to the starting point will experience slightly less time than a person or clock that remained at the starting point. This effect is a consequence of acceleration and the changing relationships between space and time that come with different velocities.

The time speeding effect is gravitational redshift—a person or clock that is farther from the earth’s center experiences slightly more time than a person or clock that remains at the earth’s surface. This effect is a consequence of the decreased potential energy that comes with being deeper in the earth’s gravitational potential well.

How does an astronaut get prepared for the long period of antigravity that he is…

How does an astronaut get prepared for the long period of antigravity that he is going to be put on? — ASB, Chiapas, Mexico

When an astronaut is orbiting the earth, he isn’t really weightless. The earth’s gravity is still pulling him toward the center of the earth and his weight is almost as large as it would be on the earth’s surface. What makes him feel weightless is the fact that he is in free fall all the time! He is falling just as he would be if he had jumped off a diving board or a cliff. If it weren’t for the astronaut’s enormous sideways velocity, he would plunge toward the earth faster and faster and soon crash into the earth’s surface. But his sideways velocity carries him past the horizon so fast that he keeps missing the earth as he falls. Instead of crashing into the earth, he orbits it.

During his orbit, the astronaut feels weightless because all of his “pieces” are falling together. Those pieces don’t need to push on one another to keep their relative positions as they fall, so he feels none of the internal forces that he interprets as weight when he stands on the ground. A falling astronaut can’t feel his weight.

To prepare for this weightless feeling, the astronaut needs to fall. Jumping off a diving board or riding a roller coaster will help, but the classic training technique is a ride on the “Vomit Comet”—an airplane that follows a parabolic arc through the air that allows everything inside it to fall freely. The airplane’s arc is just that of a freely falling object and everything inside it floats around in free fall, too—including the astronaut trainee. The plane starts the arc heading upward. It slows its rise until it reaches a peak height and then continues arcing downward faster and faster. The whole trip lasts at most 20 seconds, during which everyone inside the plane feels weightless.

Is not the current used in Europe direct current? If so, do they use transformer…

Is not the current used in Europe direct current? If so, do they use transformers or do their lines get very hot? Why do our appliances not work there?

Europe uses alternating current, just as we do, however some of the characteristics of that current are slightly different. First, Europe uses 50 cycle-per-second current, meaning that current there reverses directions 100 times per second. That’s somewhat slower than in the U.S., where current reverses 120 times per second (60 full cycles of reversal each second or 60 Hz). Second, their standard voltage is 230 volts, rather than the 120 volts used in the U.S.

While some of our appliances won’t work in Europe because of the change in cycles-per-second, the biggest problem is with the increase in voltage. The charges entering a U.S. appliance in Europe carry about twice the energy per change (i.e. twice the voltage) and this increased “pressure” causes about twice the number of charges per second (i.e. twice the current) to flow through the appliance. With twice the current flowing through the appliance and twice as much voltage being lost by this current as it flows through the appliance, the appliance is receiving about four times its intended power. It will probably burn up.

If only electrons move around, why do you keep using positive charges in the dem…

If only electrons move around, why do you keep using positive charges in the demos?

It’s useful to describe moving electric charges as a current and for that current to flow in the direction that the charges are moving. Suppose that we define current as flowing in the direction that electrons take and look at the result of letting this current of electrons flow into a charge storage device. We would find that as this current flowed into the storage device, the amount of charge (i.e. positive) charge in that device would decrease! How awkward! You’re “pouring” something into a container and the contents of that container are decreasing! So we define current as pointing in the direction of positive charge movement or in the direction opposite negative charge movement. That way, as current flows into a storage device, the charge in that device increases!

How come the flashlight works when you switch the batteries but my walkman or ga…

How come the flashlight works when you switch the batteries but my walkman or gameboy doesn’t?

The bulb in a battery doesn’t care which way current flows through it. The metal has no asymmetry that would treat left-moving charges differently from right-moving charges. That’s not true of the transistors in a walkman or gameboy. They contain specialized pieces of semiconductor that will only allow positive charges to move in one direction, not the other. When you put the batteries in backward and try to propel current backward through its parts, the current won’t flow and nothing happens.

How are you “shocked”?

How are you “shocked”?

Your body is similar to salt water and is thus a reasonably good conductor of electricity. Once current penetrates your skin (which is insulating), it flows easily through you. At high currents, this electricity can deposit enough energy in you to cause heating and thermal damage. But at lower currents, it can interfere with normal electrochemical and neural process so that your muscles and nerves don’t work right. It takes about 0.030 amperes of current to cause serious problems for your heart, so that currents of that size can be fatal.

How do rechargeable batteries get recharged?

How do rechargeable batteries get recharged?

You can recharge any battery by pushing charge through it backward (pushing positive charge from its positive terminal to its negative terminal). However, some batteries don’t take this charge well or heat up. The ones that recharge most effectively are those that can rebuild their chemical structures most effectively as they operate backward.

What keeps the earth stable so that it doesn’t get pulled up into the “magnet”…

What keeps the earth stable so that it doesn’t get pulled up into the “magnet”?

If you are asking why doesn’t the earth itself get pulled up toward a large magnet or electromagnet that I’m holding in my hand, the answer is that the magnetic forces just aren’t strong enough to pull the magnet and earth together. I’m holding the two apart with other forces and preventing them from pulling together. The forces between poles diminish with distance. Those forces are proportional to the inverse square of the distance between poles, so they fall off very quickly as the poles move apart. Moreover, each north pole is connected to a south pole on the same magnet, so the attraction between opposite poles on two separate magnets is mitigated by the repulsions of the other poles on those same magnets. As a result, the forces between two bar magnets fall over even faster than the simple inverse square law predicts. It would take an incredible magnet, something like a spinning neutron star, to exert magnet forces strong enough to damage the earth. But then a neutron star would exert gravitational forces that would damage the earth, too, so you’d hardly notice the magnetic effects.