How does the “night vision” mode of the car rear view mirror work?

How does the “night vision” mode of the car rear view mirror work? — P

The glass in the rear view mirror is cut so that it forms a thin wedge—it’s thicker at the top than it is at the bottom. Its back surface is fully mirrored by a layer of aluminum. For daytime use, the mirror is oriented so that light from behind the car enters the glass, reflects from the layer of aluminum on the back surface, and returns through the glass to your eyes.

But when you tip the mirror upward for night use, the mirrored back surface presents you only with a view of the car’s darkened ceiling. However, there is a weak second reflection from the clear front surface of the mirror—whenever light changes speeds, as it does upon entering the glass, some of that light reflects. About 4% of the light striking the front surface of the mirror from behind the car reflects without entering the glass and is directed toward your eyes. Since the image you see is about 25 times dimmer than normal, it doesn’t blind you the way a reflection from the mirrored surface would.

Could you explain the meaning of polarization in optics? Please try to associate…

Could you explain the meaning of polarization in optics? Please try to associate it with water waves if possible, to help me visualize it, and avoid the use of electric and magnetic fields. — AM, Yavne, Israel

I can’t completely avoid electric and magnetic fields because polarization in optics is associated with a wave’s electric field. I also can’t depend entirely on water waves because they only have one (transverse) polarization. Still, I will try.

First, consider a wave traveling toward us on the surface of a lake. Suppose that this wave passes under a small boat and I ask you which way the wave is making the boat move. You would tell me that the boat is moving up and down. I would then tell you that the wave is vertically polarized because it causes objects that it encounters to move up and down rhythmically.

Unfortunately, pure water won’t do for the next step because it won’t support horizontally polarized waves. So let’s imagine that some ecological disaster has turned the entire lake into gelatin. An explosion at the side of the lake now causes a wave to begin heading toward us on the gelatin lake, but this strange wave involves a side-to-side motion of the lake’s surface. Now when the wave passes under the boat, the boat moves side-to-side rhythmically. In this case the wave is horizontally polarized because it causes objects that it encounters to move left and right rhythmically.

Now let’s return to optics. When an electromagnetic wave heads toward us, its electric fields will push any electrically charged particles it encounters back and forth rhythmically. If we watch one of these charged particles as the wave passes it and observe that this particle moves up and down, then the wave is vertically polarized. If instead the charged particle moves left and right, then the wave is horizontally polarized.

During a recent ice storm, I was standing in my front doorway before dawn and th…

During a recent ice storm, I was standing in my front doorway before dawn and the entire southern sky turned brilliant blue-green for about five seconds or more. What caused this effect? People who missed it tell me it was just a transformer “blowing up” but I’ve seen one blow up on our street and there is no comparison. The light I saw virtually filled the entire horizon.

You probably saw a sustained high-voltage arc between high-tension wires and/or the ground. I would guess that the ice pulled down one of the wires or caused a tree to fall across them. While transformer explosions often involve hundreds of kilowatts of electric power being turned into light and heat, most of that light is hidden from view inside the transformer. Such an explosion can be dramatic, with some nice sparks and flashes, but it’s usually not very bright. However, when a high-tension wire arcs, a significant fraction of the many megawatts of power flowing through the arc is converted directly into light. In effect, a high-pressure arc lamp forms right in the air and it looks like a camera flash that just keeps going until something stops the arc or the power is shut off. The blue-green color you saw comes from characteristics of the air and metal wires involved in the arc. As you saw, a couple of million watts of light are enough to light up the predawn sky quite effectively!

There is, however, an alternative explanation: you may have seen the “green flash” that occasionally appears just as the sun reaches the horizon at sunrise or sunset. This flash is a refraction effect in the atmosphere in which only blue-green light from the sun reaches the viewer’s eyes for a second or two while the sun is just below the horizon. However, this green flash should appear in the eastern sky just before dawn, not the southern sky.

What is the speed with which electric power is transmitted through the power gri…

What is the speed with which electric power is transmitted through the power grid? Believe it or not, the education center at an important nuclear power plant claims that “electrons travel at the speed of light,” an obvious impossibility for current in a copper wire. What is the maximum speed of an electron in a commercial electric power grid? in a superconductor? — AW, Alexandria, VA

Amazingly enough, the speed at which electric power travels through a wire is very different from the speed at which electrons move through that wire. In most wires, electric power travels at very nearly the speed of light while the electrons themselves travel only millimeters per second! This statement is true whether the electricity is traveling in a copper wire or a superconductor!

To understand how this difference in speeds is possible, think about what happens when you turn on the water to a long hose. If that hose is already filled with water, water will immediately begin pouring out of the hose’s end even though the water is flowing quite slowly through the hose. While the water itself moves slowly, the water’s effects travel through the hose at the speed of sound in water—several miles per second! Water at the end of the hose “knows” that you have opened the faucet long before new water from the faucet arrives.

Similarly, when you turn on a flashlight, electrons begin to flow out of the battery’s negative terminal at speeds of only a few millimeters per second. But these electrons don’t have to travel all the way to the light bulb for the bulb to light up. When these electrons leave the battery, they push on the electrons in front of them, which push on the electrons in front of them, and so on. They produce an electromagnetic wave that rushes through the wire at an incredible speed. As a result, electrons begin flowing through the light bulb only a few billionths of a second after the first electron left the battery. So while the electrons that carry electricity through the power grid flow rather slowly, the power they deliver moves remarkably fast.

I heard some time ago about a car that uses microwaves to heat the air in front …

I heard some time ago about a car that uses microwaves to heat the air in front of it so that it creates a vacuum. The relatively higher pressure behind then pushes it forward. Is this possible? — RM, Toronto, Ontario

Even if microwaves were effective at heating air, which they are not, this heating would not propel the car forward. The air in front of the car would become hot, but its pressure would remain almost unchanged. Instead, the air would expand to occupy a larger volume and would then be lifted upward by the cooler air around it (“hot air rises”). Cooler air would flow in to replace the escaping hot air and the car would simply sit there with a steady stream of hot air rising in front of it.

Could you suspend a car on hot air produced below it?

Could you suspend a car on hot air produced below it? — RM, Toronto, Ontario

For the buoyancy of hot air to suspend a car, you would need a lot of it—in effect you would have to turn the car into a hot air balloon. That’s because the lifting force experienced by hot air is really supplied by the cooler air around it and this upward buoyant force is proportional to the volume of hot air being lifted. Since a car is pretty heavy, the volume of hot air required will be enormous.

However, if you trap the air underneath the car, so that its volume can’t increase, and then heat that air, its pressure will rise. This increased pressure below the car would produce an overall upward pressure force on the car and could support the car’s weight. In effect, you would be creating a ground-effect hovercraft in which the elevated pressure of trapped hot air supports the weight of the vehicle. But it would be easier and less energy-intensive to pump air underneath your hovercraft with a big fan. That’s what most ground-effect vehicles do. They pack extra air molecules underneath themselves and then allow those molecules to support their weight. Furthermore, because air molecules are always leaking out from beneath the vehicle, you’ll need a fan to replace them anyway.

How does the automatic cutoff valve on a gasoline pump work? How is it able to s…

How does the automatic cutoff valve on a gasoline pump work? How is it able to shut off the gas before the nozzle has become immersed in the liquid? I don’t see how the pump could be so sensitive to back pressure in the gasoline. — NG, Bloomsburg, PA

As you suspect, the pump isn’t able to detect the change in gasoline pressure that occurs when the fill level reaches the nozzle. Instead, the nozzle uses several hidden components to shut itself off when the tank is full. There is a small hole near the end of the nozzle that becomes blocked by the liquid gasoline as soon as the fill level reaches that hole. Blocking this hole with gasoline is what shuts off the valve. There is actually a thin tube inside the main gasoline delivery hose that operates this valve system. That tube runs from the hole in the nozzle to a vacuum pump inside the gasoline-pumping unit. While the pump is dispensing gasoline into a partially filled tank, air flows easily into the nozzle’s hole and the pressure inside the thin tube remains close to atmospheric pressure. But when the level of gasoline rises high enough, it essentially blocks the hole and the pressure inside the thin tube drops. This pressure drop is what triggers the valve and stops the gasoline flow. Look for the hole near the end of the metal nozzle next time you fill your car with gasoline. In most cases, it’s easy to see.

Could microwave heating be used to treat sewage to wipe out disease organisms in…

Could microwave heating be used to treat sewage to wipe out disease organisms in it? — KO

While microwave heating could be used to sterilize sewage, it’s not the most energy efficient or inexpensive technique. Microwave heating is really only worthwhile in cases where you can’t reach the inside of an object directly—as is the case in most solid foods. Since sewage is essentially liquid, it can be heated quickly and efficiently by passing it close to a hot surface. Just about anything can be used to heat that surface—electricity, natural gas, coal, you name it.

But to be even more energy efficient, the sewage that was just sterilized a minute ago and is still hot can be used to heat the sewage that is about to be treated! A well designed thermal treatment facility could employ “counter-current exchange”—that is it could pass the hot, treated material through a heat exchanger to allow it to transfer most of its excess heat to the cooler, untreated material that is about to be sterilized. By recycling the heat in this manner, the facility could avoid having to burn so much fuel. The only drawback with this technique is that the heat exchanger must be leak-proof—it must keep the sterilized material from touching and being contaminated by the unsterilized material.

With the amount of wind that’s produced by high-speed traffic on expressways, wh…

With the amount of wind that’s produced by high-speed traffic on expressways, why don’t electric companies put wind-powered generators in the center lanes? Using this (wasted) wind to generate electricity would be cheaper, safer, and environmentally friendlier than the power plants that they are running now. — DJA

While wind generators are being used experimentally to charge batteries in roadway equipment that can’t be reached with power lines, there are at least three reasons why such generators aren’t in large scale use. First, wind generators that connect to the AC power grid work most efficiently when they turn at a steady rate—the generator itself must remain in synch with the cyclic alternating current in the electric power lines. The intermittent and sporadic winds produced by passing cars and trucks aren’t really suitable for such wind generators.

Second, to make efficient use of the wind created by traffic, hundreds of wind generators would have to be installed on each mile of expressway. Since wind generators are expensive, it’s much more cost effective to put them on windy ridges out in the country or by the seashore.

Third, the wind generators you propose would actually extract energy from the cars and trucks and reduce their gas mileages! That fact might surprise you, since it would seem that extracting energy from the wind wouldn’t have any effect on the cars and trucks that created that wind. But the wind and the vehicles continue to interact as they move along the expressway—each vehicle drags a pocket of air with it and interfering with this air pocket has the effect of interfering with the vehicle! The vehicle uses energy to maintain this moving air pocket and it burns additional fuel. An aerodynamically well-designed vehicle has a relatively small air pocket, but there is a limit to what can be done. To reduce the energy cost of maintaining the air pocket, the vehicle’s driver can steer it into the air pocket behind another vehicle so that the two vehicles share a single air pocket. The lead vehicle then provides most of the energy needed to keep the air pocket moving. This technique of sharing an air pocket is called “drafting” and is frequently used by bicycle racers. But while drafting makes it easier for many vehicles to keep their air pockets moving, the wind generators that you propose would make it harder—they would steal energy from the air pockets of every passing vehicle and make those vehicles fight harder to keep their air pockets moving.

A better way to save energy would be to encourage large-scale drafting in some safe way. Having chains of independent cars tailgate one another would be energy efficient, but would cause horrific accidents. However, assembling those cars into a tightly coupled “train” may someday become possible with advances in technology and computer controls.

I fight a constant battle with mildew in the Pacific Northwest. I can buy solid …

I fight a constant battle with mildew in the Pacific Northwest. I can buy solid chemicals to put in my closets, which take water out of the air, eventually creating a bucket full of water. Do these devices actually lower the moisture content of the air or do they just make me feel like I’m doing something? — MD

How much effect these drying agents have depends on how much air they’re exposed to. Water molecules are continuously going back and forth between the air and everything exposed to that air—your clothing, your hair, the walls of your home, the contents of a saltshaker, and the drawers in a wooden bureau. The water molecules land on and take off from every surface, like busy miniature airports. The rate at which water molecules land on an object depends on how humid the air is. The rate at which water molecules leave that object depends on how hot the object is and on how tightly water molecules cling to it.

The landing and leaving processes are in perpetual competition and the fastest one wins. If the air is humid and the object is cold or attractive to water molecules, the landing process dominates and water condenses out of the air and onto the object. If the air is dry and the object is hot or doesn’t bind water molecules well, taking off dominates and water evaporates from the object into the air.

Your problem is that the air in your closets is very humid and landing is winning—too much water is condensing on your walls. To stop this condensation, you either have to heat the walls, so that water molecules leave them faster, or reduce the humidity of the air, so that water molecules land less often. Putting a material that binds water molecules into your closets changes the balance of landing and taking off—water molecules that land on this material don’t return to the air often so the humidity of the air diminishes. With less humidity in the air, the rate at which water molecules land on the walls also diminishes.

But this drying effect only works if the air in the closet is trapped there. If your closet exchanges air quickly with outdoor air, the water molecules removed by the drying agent will be quickly replaced with new water molecules from outside. In effect, you will be trying to dry the great outdoors, a hopeless task. To make the most of this drying agent, you should let it work on as little air as possible by sealing the closet and slowing the exchange of air with outside. Better yet, replace the drying agent with a dehumidifier. A dehumidifier accumulates water molecules from the air by presenting the air with a chilled surface. Water molecules land on the cold surface and then don’t have enough energy to return to the air. They are trapped by the cold rather than by chemical binding.