What is an H-Bomb made of?

What is an H-Bomb made of?

A hydrogen bomb or thermonuclear bomb is a nuclear weapon that obtains most of its energy from the fusion of hydrogen nuclei into helium nuclei. This fusion typically involves deuterium and tritium nuclei, the heavy isotopes of hydrogen. Deuterium is a stable, naturally occurring isotope with one proton and one neutron in its nucleus, and can be extracted from normal water. Tritium is an artificial, radioactive isotope with one proton and two neutrons in its nucleus, and can be formed in nuclear reactors or, during a nuclear explosion, by the exposure of lithium nuclei to the neutrons formed in that explosion.

Since hydrogen nuclei are positively charged, they repel one another. To get these heavy hydrogen nuclei close enough together to fuse into helium nuclei, the hydrogen nuclei must be heated to fantastic temperatures. This heating is done with a fission bomb—a uranium or plutonium bomb. When the fission bomb explodes, its heat is enough to trigger the hydrogen bomb.

How does a strobe light work?

How does a strobe light work? — JM, Kettering, OH

A strobe light passes a brief, intense pulse of electric current through a gas, which then emits a brilliant burst of light. The gas is usually one of two inert gases, xenon or krypton, that emit relatively white light when they’re struck by the fast moving electrons in the electric current. When it hits a xenon or krypton atom, an electron may give up some of its kinetic energy—its energy of motion—to the electrons in the atom. Those atomic electrons shift from their usual orbitals (quantum mechanically allowed orbits) to higher-energy orbitals that they usually don’t travel in. The atomic electrons remain only briefly in these higher-energy orbitals before dropping back to their original orbitals. As they drop back down, these electrons give up their extra energy as light. Because krypton and xenon atoms have a great many electrons and their electronic structures are very complicated, they emit light over a broad range of wavelengths. Moreover, the gases are at relatively high pressures and collisions between the atoms while they are emitting light further smooth out the spectrum of light they produce. Thus the strobe emits a rich, white light during the moments while current is passing through the gas.

Supplying the enormous current needed to maintain the brief arc in the strobe’s gas is done with the help of a capacitor, a device that stores separated electric charge. A high voltage power supply pumps positive charge from the capacitor’s negative plate to its positive plate, until there is a huge charge imbalance between those two plates. You can often hear a whistling sound as this power supply does its work. The capacitor plates are connected to one another through the gas-filled flashlamp that will eventually produce the light. However, current can’t pass through the gas in the flashlamp until some electric charges are injected into the gas. These initial charges are usually produced by a high voltage pulse applied to a wire that wraps around the middle of the flashlamp. When a few charges are inserted into the gas, they accelerate rapidly toward the positive or negative wires that extend from the charged capacitor. As these charges pick up speed, they begin to collide with the gas atoms and they deposit energy in those atoms. Electrons are occasionally knocked out of atoms or out of the wires at the end of the flashlamp and these new charges that enter the gas also begin to accelerate toward the wires. A cascade of collisions quickly leads to a violent arc of charged particles flowing through the flashlamp and colliding with the gas atoms. The flashlamp emits its brilliant burst of light that terminates only when the capacitor’s separated electric charges and stored energy are exhausted.

How does a radio receive transmissions from one station and not another, and how…

How does a radio receive transmissions from one station and not another, and how does it turn them into audible waves? — T, Chester, VT

A radio wave contains an electric field that pushes on any electric charge it encounters. That’s why, when a radio wave passes the antenna of your radio, it causes electric charges in that antenna to accelerate up and down. There is also a resonant circuit connected to the antenna—a circuit that oscillates strongly only when charge is pushed up and down the antenna at exactly the circuit’s resonant frequency. If the circuit’s resonant frequency is the same as that of the radio wave, the small pushes exerted on charges in the antenna add up so that charge moves more and more vigorously through the resonant circuit. But if your radio isn’t tuned to the frequency of the radio wave, the overall motion of charge on the antenna and this resonant circuit is small. That’s why your radio only responds to the radio transmission of one station and not others. To understand this effect, imagine pushing a child on a swing. If you push rhythmically at just the right frequency, the child will swing higher and higher. But if you push rhythmically at the wrong frequency, the child will just jitter about a bit.

Once charge is moving strongly through the resonant circuit in your radio, the radio can monitor various features of that moving charge. If the station is using the AM or amplitude modulation technique to represent sound, your radio studies the amount of charge moving back and forth through the resonant circuit. When that flow of charge—that current—is strong, it moves the speaker cone toward you and produces a compression of the air. When that current is weak, it moves the speaker cone away from you and produces a rarefaction of the air. These changes in air density and pressure reproduce the sound that the station is transmitting.

If the station is using the FM or frequency modulation technique to represent sound, your radio studies the frequency at which charge moves back and forth in the resonant circuit. Very small changes in this frequency, caused by frequency changes in the radio wave itself, are used to control the speaker cone in your radio. When the frequency is raised slightly above normal, your radio moves the speaker cone toward you and produces a compression of the air. When the frequency is lowered slightly below normal, your radio moves the speaker cone away from you and produces a rarefaction of the air. Again, these changes in air density and pressure produce sound.

What are some unusual conductors of electricity?

What are some unusual conductors of electricity?

How about graphite and cadmium sulfide? Graphite, such as that in the lead of a pencil, conducts electricity even though it’s not formally a metal. If you draw a dark line on a sheet of paper, that line can act as a wire for sensitive electric circuits. Cadmium sulfide is a photoconductor—a material that is electrically insulating in the dark but that conducts electricity when exposed to light. Photoconductors of this sort are used in some light sensors, as well as in xerographic copiers and laser printers.

Is it possible to charge batteries using static electricity? Can lightning or at…

Is it possible to charge batteries using static electricity? Can lightning or atmospheric charges be stored in a capacitor and then released into a cell for charging? — JM, Lafayette, NT

Yes, static electricity has energy associated with it and that energy can be used to charge batteries, at least in principle. Static electricity is literally stationary separated electric charges—essentially separated charges stored on capacitor-like surfaces. As you suggest, it may be easiest to transfer these separated charges into a real capacitor and then to use this charged capacitor to recharge an electrochemical cell. Whether such a procedure can be carried out efficiently and in a cost-effective manner isn’t clear to me. The charges involved in lightning have so much energy per charge—so much voltage—that they’re hard to use for anything. Even the charges that you accumulate when you rub your feet on a wool carpet on a cold, dry winter day acquire an enormous amount of energy per charge. To charge most batteries, you need lots of low energy charges, not the small numbers of high-energy charges that are typical of static electricity. Using this tiny current of high-energy charges to charge a battery is equivalent to trying to fill a swimming pool with water from a high-pressure car-washing nozzle—too little water under too much pressure. You can do it, but there are better ways.

What is a magnet?

What is a magnet?

A magnet is an object that has magnetic poles and therefore exerts forces or torques (twists) on other magnets. There are two types of these magnetic poles—called, for historical reasons, north and south. Like poles repel (north repels north and south repels south) while opposite poles attract (north attracts south). Since isolated north and south magnetic poles have never been found in nature, magnets always have equal amounts of north and south magnetic poles, making them magnetically neutral overall. In a permanent magnet, the magnetism originates in the electrons from which the magnet is formed. Electrons are intrinsically magnetic, each with its own north and south magnetic poles, and they give the permanent magnet its overall north and south poles.

What is pH and why is it so important to my garden pond and spa?

What is pH and why is it so important to my garden pond and spa? — NW, California

pH is a measure of the concentration of dissolved hydrogen ions in water. When a hydrogen atom loses an electron and becomes a hydrogen ion—a proton—it can dissolve nicely in water. Actually, this proton sticks itself to the oxygen atom of a water molecule, producing a hydronium ion (H3O+) that is then carried around by shells of water molecules. The higher the concentration of hydrogen (or hydronium) ions in water, the lower the water’s pH. More specifically, pH is negative the log (base 10) of the molar hydrogen ion concentration. That means that water with a pH of 6 has ten times as many hydrogen ions per liter as water with a pH of 7.

Pure water naturally contains some hydrogen ions, formed by water molecules that have spontaneously dissociated into hydrogen ions (H+) and hydroxide ions (OH). Pure water has enough of these hydrogen ions in it to give it a pH of 7. But if you dissolve acidic materials in the water, materials that tend to produce hydrogen ions, the pH of the water will drop. If you dissolve basic materials in the water, materials that tend to bind with hydrogen ions and reduce their concentration, the pH of the water will rise. Water with too many or too few hydrogen ions tends to be chemically aggressive and we do best in water that has a pH near 7.

Our problem concerns temperature. At different temperatures, solubility of compo…

Our problem concerns temperature. At different temperatures, solubility of compounds varies. If we extract water from a pond at two degrees Celsius and then test it at room temperature, our reading isn’t going to be accurate. On the other hand, it isn’t practical for us to perform out tests outside. The substances we are testing are nitrites, nitrates, ammonia, pH, hardness, oxygen level, phosphates, temperature, and ORP. — J&E, Missouri

If you collect pond water at 2° C and then bring it into a room at 20° C, there will be a few subtle changes in the water’s contents. While the amounts of various dissolved materials can’t change unless atoms move in or out of the water, how they interact with one does change somewhat with temperature. I would be very surprised if anything that’s dissolved in that pond water comes out of solution when you warm it to room temperature, so if all you want to do is to determine the concentrations of various dissolved materials, go ahead and do it at room temperature. You might have to be careful with dissolved gases, because it’s relatively easy for gas molecules to enter or leave the pond water without your noticing that it’s happening, but the nitrites, nitrates, hardness, and phosphates aren’t going anywhere. Ammonia can leave as a gas, so you should be a little careful with it. I don’t know enough about ORP (oxidization reduction potential) to say anything about it. But you’ll have to be very careful with oxygen concentration because you can modify this just by pouring the water through air and making bubbles.

However, to be sure that the contents of the pond water are interacting with one another just as they were in the pond, you should cool the water back down to 2° C before making any measurements. This is particularly important for pH measurements, since water’s pH decreases slightly with increasing temperature.

How does fog form?

How does fog form? — KB

The interface between a droplet of water and the air around it is a busy place. Water molecules are constantly leaving the droplet to become water vapor in the air and water molecules in the air are constantly returning to the droplet as liquid water. What determines whether the droplet grows or shrinks is the difference between these two rates. If more water molecules return to the droplet than leave, the droplet will grow. If more water molecules leave the droplet than return, the droplet will shrink. How often water molecules leave the droplet depends on the droplet’s temperature. How often water molecules return to the droplet depends on the moisture content of the air.

This dynamic balance of growth and shrinkage occurs right in the middle of the air all the time. Tiny water droplets form by accident, even in reasonably dry air, but in most cases they quickly shrink back to nothing because the leaving rate is higher than the returning rate. However, when air that contains lots of moisture experiences a decrease in temperature, the returning rate can exceed the leaving rate. When that happens, the tiny droplets that appear by accident don’t immediately disappear. Instead, they grow larger and larger. Depending on the altitude, we call the white mist that results clouds or fog.

How does dry ice work to freeze things?

How does dry ice work to freeze things? — JH

Solid carbon dioxide or “dry ice” sublimes into gaseous carbon dioxide at a temperature well below 0° C. Since it takes energy to separate the molecules of carbon dioxide from one another, the dry ice absorbs heat as it sublimes and takes that heat out of any warmer objects nearby. Those nearby objects become colder and colder as the heat leaves them and eventually they begin to freeze.