How do you make an energy converter to convert water into energy?

How do you make an energy converter to convert water into energy? — SB

I’m afraid that there is no simple way to convert water into energy. People have been trying to use fusion to extract the nuclear energy stored in the hydrogen nuclei in water. But while billions of dollars have been spent on research, there is no viable scheme for this process for controlled fusion in sight. The stars are powered by hydrogen fusion, but people on the earth aren’t likely to be using it as a source for peaceful energy any time soon.

How does a halogen lamp get so hot?

How does a halogen lamp get so hot?

Like all incandescent bulbs, a halogen lamp creates its light as visible thermal radiation from an extremely hot tungsten wire. In fact, the wire in a halogen lamp is allowed to get even hotter than the one in a normal bulb. But while the glass envelope of a normal bulb gets only moderately hot during use, the glass envelope of a halogen bulb gets extremely hot. That’s because the halogen bulb is using a chemical trick to keep tungsten atoms from getting away from the filament. Each time one of those tungsten atoms tries to leave, it’s picked up by halogen molecules inside the glass envelope and returned to the filament. These halogen molecules can even pick the tungsten atoms up off the glass envelope and return them to the filament, but only if the glass envelope is allowed to get extremely hot. That’s why the glass envelope of the halogen bulb is allowed to run so hot—if it weren’t, it would accumulate the tungsten atoms permanently and it would darken. And since the tungsten atoms wouldn’t be returned the filament, the filament wouldn’t last as long.

Is it possible to construct “home-made” thermal windows (double pan) so conden…

Is it possible to construct “home-made” thermal windows (double pan) so condensation can be avoided? I work in stained glass and want to make an energy efficient window. — JAA, York, PA

Yes, you should be able to make your own thermal windows. The value of having two vertical panes of glass that are separated by a narrow gap is that heat has trouble flowing across gap. While air is a poor conductor of heat, it carries heat reasonably well via convection. But with only a narrow gap of air between two vertical glass panes, convection doesn’t work well. Air heated by its contact with the warmer pane tends to flow directly upward, rather than toward the cooler pane. Similarly, air cooled by its contact with the cooler pane tends to flow directly downward, rather than toward the warmer pane.

But as you’ve anticipated, you may have trouble with condensation on the inside surface of the cooler pan. Your best bet at avoiding this problem is to completely seal the space between the two panes and to fill it with very dry air or even bottled nitrogen gas—which can be obtained cheaply from a local gas supply company. You’d have to blow the dry air or nitrogen in through one hole and allow the trapped air to flow out through another hole. After the trapped air has been replaced several times with dry gas and you’re sure there is little moisture left between the panes, you can stop replacing the air and seal both holes. But with stained glass, you have many potential gaps through which moisture can enter the trapped air, so achieving a seal could be very difficult. In that case, you might just put a desiccant at one edge of the window. Drierite is an inexpensive material that resembles little white pebbles and that can absorb quite a bit of moisture. If you put some Drierite between the two panes before you did your best to seal the space between them, I would expect the Drierite to remove enough moisture from the trapped air to avoid condensation problems. After a few years, enough moisture may have leaked in through cracks to cause trouble, in which case you would simply replace the Drierite. One useful type of Drierite is blue when fresh and turns pink when it has absorbed its fill of moisture.

Can an object be heated no hotter than the temperature of the flame beneath it? …

Can an object be heated no hotter than the temperature of the flame beneath it? For example, if the temperature of a candle flame is 1770° C and the melting point of the solid being heated above it is 1800° C, would the solid ever melt if the flame were held under it long enough? — MR, Ohio

The answer is a qualified no. Heat always flows from hotter objects to colder objects, so the solid can’t get any hotter than the flame that’s heating it. But this observation is stems from the laws of thermodynamics, particularly the second law of thermodynamics. Unlike Newton’s laws of motion, which are rigid, inviolable laws that are never, even violated in our universe, the second law of thermodynamics is a statistical laws—it says that certain events are extremely unlikely but doesn’t say that they are truly impossible. The flow of heat from hotter to colder is a statistical law, not a rigid mechanical law. So it is possible, although extraordinarily unlikely, that heat can flow from the 1770° C flame to the 1799° C solid and warm that solid all the way to 1800° C. However, for any reasonable sized solid (say, more than 10 atoms), the possibility of this occurring is going to be so unbelievably small as to be ridiculous. It’s as unlikely as taken a crystal wineglass that has been crushed into dust and then dropping it on the floor and having the impact reassemble the wineglass into its original pristine form. The laws of motion don’t forbid such as fantastic result, but it sure would be unlikely. I’ve tried it several times myself, without success. But then, you’re not going to be able to melt your solid with a not-hot-enough flame, either. You’d have to wait a few ages of the universe just to have that solid climb a tiny fraction of a degree above the temperature of the flame. For 20 degrees… forget it.

Can a rocket, starting back toward the earth from 30,000 feet, reach the speed o…

Can a rocket, starting back toward the earth from 30,000 feet, reach the speed of sound before reaching the earth? — WJT, Crystal, MN

Some rockets probably reach the speed of sound in a few hundred feet heading upward, so that reaching the speed of sound in 30,000 feet heading downward would be a simple task. In fact, if you dropped a highly aerodynamic object such as a rocket from 30,000 feet, it could reach the speed of sound even without any propulsion! Gravity alone will accelerate it to about 130% of the speed of sound.

Do airplanes travel faster from east to west or west to east in the United State…

Do airplanes travel faster from east to west or west to east in the United States? — SU, Lawrence, KS

Airplanes travel faster from west to east in the United States. That’s because the prevailing winds at out latitudes are eastward and they blow the airplane toward the east. When the airplane flies toward the east, it has a tail wind and travels faster with respect to the ground. When the airplane flies toward the west, it has a headwind and travels slower with respect to the ground.

Our area has been flooded recently (Kentucky, Indiana) by about 15 inches of rai…

Our area has been flooded recently (Kentucky, Indiana) by about 15 inches of rain. How is it that the Ohio River has risen so many feet and not just 15 inches? — RK

The Ohio River is carrying water collected by vast areas surrounding the river and this accumulated volume of water is enough to raise the river’s level by many feet. Similarly, if you collected all the rain water that accumulated on your yard and poured that water into a bathtub, the level of water in the bathtub would rise far more than 15 inches.

My husband and I watch Star Trek often. He says that travel at warp speeds (fast…

My husband and I watch Star Trek often. He says that travel at warp speeds (faster than the speed of light) is impossible and that Einstein’s theories prove it. Is this true? — JL, Las Cruces, NM

I’m afraid that travel at or above light speed is simply impossible and that “warp speed” travel is just a Hollywood fantasy. Einstein’s special relativity forbids objects with mass from reaching or exceeding the speed of light and even if there were some way to travel vast distances in less time than it would take light to cover those distances, but without actually traveling at light speed, such travel would violate some important principles of causality—you would be able to meet your own grandparents as children and that sort of thing.

One of the reasons that Hollywood ignores real physics so often is that real physics is almost wilder than fiction. Suppose that you decided to travel to a star 5 light-years away from the earth and that you have a starship that can almost reach the speed of light (another nearly impossible thing, but let’s ignore that problem). If you travel to the star at almost the speed of light, make one loop around it, and head right back to earth, I will have aged 10 years while waiting for you to return. However, you will only have aged days or weeks, depending on just how close you came to the speed of light. During the trip, we will have disagreed on many physical quantities, particularly the times at which various events occurred and the distances between objects. The mixing of time and space that occur when two people move rapidly relative to one another would be so disorienting to movie or television viewers that Hollywood ignores or simplifies these effects.

How fast does the earth wobble and why does it wobble?

How fast does the earth wobble and why does it wobble? — MF, Tokyo, Japan

The earth’s rotational axis wobbles around in a circle once every 25,800 years because of torques (twists) exerted on it by the moon’s gravity. The moon’s gravity is able to twist the earth slightly because the earth isn’t quite spherical. The earth’s rotation causes it to bulge outward a little around its equator and it is this bulging that allows the moon to exert a torque on the earth.

How far away is the moon?

How far away is the moon?

It’s about 235,000 miles (375,000 kilometers) away from the earth’s surface. However, it’s drifting about 1.3 inches (3.5 centimeters) farther away every year. That’s because tides on the rotating earth gently pull the moon forward in its orbit as they slowly extract energy from the earth’s rotation. Because of this transfer of energy from the earth’s rotation to the moon’s orbit, the moon is gradually slipping farther away from the earth.