When you spray water from a garden hose into the air, with the sun behind you, y…

When you spray water from a garden hose into the air, with the sun behind you, you see a rainbow which appears to stretch right across the sky, in the same way that rainbows form by normal rain appear. In the garden hose case, the water droplets are only a few feet in front of the observer. Is the image of a normal rainbow also only a few feet away or is it formed by droplets within the total volume of the rain shower? If this latter case is true, does the rainbow in fact form a complete circle that is cut off by the horizon? — RP, Solihull, England

A rainbow isn’t an image that originates at a specific distance away from your eyes. It consists of rays of colored light that travel at particular angles away from the water droplets that produce them. You see red light coming toward you from a certain angle because at that angle, the water droplets are all sending red light toward you. In the garden hose case, the water droplets are so densely arranged that they are able to create a brilliant rainbow in only a few meters of thickness. In a typical rainstorm, sunlight must travel through hundreds or thousands of meters of raindrops to produce an intense rainbow. When you look up toward the red arc of the normal rainbow, you are seeing light directed toward your eyes by millions of water droplets, some close and others distant, that are all sending a part of the red portion of the sunlight striking them toward you and the other wavelengths of sunlight elsewhere.

You are correct that a normal rainbow is cut off abruptly by the horizon and that it would continue down below to form a full circle if the ground weren’t in the way. People in airplanes sometimes see full 360° rainbows.

When you hold a flashlight to your hand, some of the light comes through. What l…

When you hold a flashlight to your hand, some of the light comes through. What light frequencies shine through people? Is it possible to see inside people? — PC

Biological tissues themselves are relatively transparent. They’re not good conductors of electricity and electric insulators are typically transparent (quartz, diamond, sapphire, salt, sugar). But we also contain some pigment molecules that are highly absorbing of certain wavelengths of light. For example, the hemoglobin molecules in blood absorb green and blue light quite strongly, so that they appear red. When you look at a flashlight through your hand, the light appears red because of this absorption of green and blue light by hemoglobin. If you use a bright enough red light source and are willing to look very carefully, probably with sophisticated light sensing devices, you can probably see a little light coming through a person’s body. But that light will probably have bounced several times during its passage, so that you won’t be able to learn anything about what the person’s internal organs look like. To get a better view of what a person’s insides look like, you need light that penetrates more effectively and that doesn’t bounce very often. Moreover, you must employ techniques to that block this bouncing light as much as possible so that you only see light that travels straight through the person. The light that does this isn’t visible light—it’s X-rays. X-rays are very high frequency, very short wavelength “light” (or rather electromagnetic waves). Tissue doesn’t absorb these X-rays much at all and they can go through people to form images.

What would you hypothesize the effects of black light bulbs to be on the tanning…

What would you hypothesize the effects of black light bulbs to be on the tanning of human skin?

I would expect that certain black light sources would cause tanning with only modest burning while other black light sources would cause burning with only modest tanning. Black light—also known as ultraviolet light—consists of very energetic light particles. The particles or photons of ultraviolet light contain enough energy to break chemical bonds and rearrange molecules. When you’re exposed to such energetic light, it causes damage to molecules in your skin cells and your skin may respond by darkening in the process we call “tanning.” But ultraviolet light is a general term that covers a broad range of wavelengths and photon energies. Long wavelength/low energy ultraviolet light tends to cause tanning while short wavelength/high energy ultraviolet light tends to cause burning—it directly kills cells. But these differences aren’t sharp and any ultraviolet light will cause some amount of skin damage.

Is it possible isolate a room or part of it totally from microwaves?

Is it possible isolate a room or part of it totally from microwaves? — DMJ

Because conducting surfaces reflect electromagnetic waves, you can shield a room from electromagnetic waves by enclosing it in conducting surfaces. For example, a room surrounded by metal mirrors will be completely black inside because light won’t be able to enter it. Furthermore, if the electromagnetic waves that you’re trying to exclude have reasonably long wavelengths, you can put holes in the conducting surfaces because electromagnetic waves can’t pass through holes in a conducting surface if those holes are substantially smaller than their wavelengths. So, to shield your room from microwaves, I’d suggest enclosing it in copper screening with holes that are no more than a few millimeters in diameter. Many scientific experiments are performed in such screen rooms, which are generally called Faraday cages.

Have you made RF leakage measurements on a sample of microwave ovens? I understa…

Have you made RF leakage measurements on a sample of microwave ovens? I understand that the FDA requires that if measured 5 cm away from any of the oven’s surfaces, the RF leakage must be less than 1 mW/cm2 for new ovens and less than 5 mW/cm2 over the oven’s life time. I’m just curious what actual measurements reveal about a “typically used” oven. — S

I’ve measured several ovens and have only found one that leaks a measurable amount of microwave power. That leaker is an oven that I’ve used in countless demonstrations and have taken apart several times (it appears on page 514 of my book). Considering the abuse that poor oven has had, it’s doing pretty well. At a talk I gave yesterday, I couldn’t get it to leak more than about 1 mW/cm2 even though I was measuring microwave power directly on the edge of the oven door—the most vulnerable point in the oven. Given that this oven’s door sags several millimeters as the result of its rough treatment, that’s not bad. In short, I doubt that there are many leaky microwave ovens around that haven’t been dropped, crushed in shipping, or otherwise suffered serious mechanical injury.

What does the inside of a radio look like and what is the difference between AM …

What does the inside of a radio look like and what is the difference between AM and FM?

These days, radios just look like electronic circuit boards inside. You’d have some trouble telling the difference between a radio and a computer. AM and FM are both techniques whereby the radio station tells your radio which way to move the diaphragm of its speaker and by how much, in order to make sound. In the AM or Amplitude Modulation technique, the station raises or lowers the power of its radio wave to tell your radio to move its speaker diaphragm toward you or away from you, respectively. The higher the power of the radio wave, the more your radio pushes its diaphragm toward you. In the FM or Frequency Modulation technique, the station raises or lowers the frequency of its radio wave slightly to tell your radio to move its speaker diaphragm toward you or away from you, respectively. The more it raises the frequency of its radio wave, the more your radio pushes its diaphragm toward you.

I’m a poor student and can’t afford the deposit for a telephone line. Is there a…

I’m a poor student and can’t afford the deposit for a telephone line. Is there any kind of telephone or radio that I can use to communicate with other people? — AG, Tulsa, OK

Yes, you can use a radio to communicate with your friends, but they will also have to have radios. Amateur radio has been popular almost since the invention of radio and the most accessible version of this hobby, citizen band or CB radio, was extremely popular in the 60’s and 70’s. You can still buy CB radios and communicate with friends directly through the air, but the general interest in CB radio has waned in recent years. Unfortunately, you can’t make your friend’s radio ring to alert them to begin listening. You’ll have to anticipate your “call.” Also, there is no privacy on conventional radio—any nearby person with a similar radio can listen in.

How did wire recorders work?

How did wire recorders work? — MW, San Diego, CA

The original recording scheme invented by Poulson used a wire as the recording medium, rather than a tape. It recorded audio information as the magnetization of a steel wire in much the same way that a modern tape recorder records audio information as the magnetization of iron particles on the surface of a plastic tape. Both devices record the air pressure changes associated with sound as magnetization changes in a magnetizable surface—the higher the air pressure, the deeper the magnetization in a particular direction; the lower the air pressure, the deeper the magnetization in the opposite direction.

How does a transformer lessen voltage?

How does a transformer lessen voltage? — C

When you send an alternating current through the primary coil of wire in a transformer, that current produces a magnetic field in the transformer. Because the current in the primary coil is changing with time—it’s an alternating current—this magnetic field is changing and changing magnetic fields are accompanied by electric fields. In the transformer, this electric field pushes electric charges around the secondary coil of wire in the transformer. Since these electric charges are pushed in the direction they are traveling, work is being done on them and their energies are increasing. However, in the transformer you mention, the secondary coil of wire has fewer turns in it that the primary coil of wire. As a result, the charges don’t receive as much energy per charge (as much voltage) as the charges in the primary coil are giving up. This type of transformer, in which the secondary coil has fewer turns of wire than the primary coil, is called a step-down transformer and reduces the voltage of an alternating current.

How do I make a battery that will charge using wind power?

How do I make a battery that will charge using wind power? — K

Any rechargeable battery will do for this job, although I’d recommend using a lead-acid battery. To charge it, you need a wind-powered DC generator. You can make such a generator by attaching a DC motor to the blades of a fan and providing some weather-vane mechanism to ensure that the fan always points into the wind. The wind will then cause the fan to spin, and with it the motor. Wind energy will become mechanical energy and that will in turn become electric energy. The DC motor will act as a generator and will produce electric power.

To make this generator recharge the battery, you first need to ensure that the motor can generate a voltage that’s at least 20% higher than the voltage of the battery while the wind is blowing at its usual rate. If it can’t, you need a higher voltage motor or a lower voltage battery. Now you should connect the negative output wire of the generator to the negative terminal of the battery and use a power rectifier (a power diode) to connect the positive output wire of the generator to the positive terminal of the battery. You need this diode to prevent the battery from sending its power into the motor and making the fan turn when the wind isn’t blowing hard. If the fan starts turning when you’ve inserted the diode, you have it installed backward. When correctly inserted, the diode will prevent the battery from operating the fan so that the fan can only charge the battery. When the wind starts blowing and the fan starts turning, it will charge the battery.