Will light going in two directions in the same space create destructive interfer…

Will light going in two directions in the same space create destructive interference?

In general, the answer is no—there won’t be large regions of space in which the two light waves cancel one another. That’s because, while the electric fields from the two waves do add to one another at each moment, those fields go in and out of phase with one another very rapidly as the waves pass and the end result is that they do not interfere with one another over broad expanses. However, there can be points or surfaces in space at which the electric fields from the waves at least partially cancel for extended periods of time and at which there is destructive interference. These points and surfaces are often observed in experiments with single frequency laser beams.

Although I have heard that CD players are on average better at reproducing sound…

Although I have heard that CD players are on average better at reproducing sound, I have also heard that the best sound quality can still be had from high end phonographs. To what extent is this true?

The digitization process does introduce some distortions into the sound signal, including aliasing (confusion about high frequencies) and quantization error (round-off errors in recording the softest sounds). However, these distortions should be so small or at such high frequencies that they should be inaudible. Still, there are always some audiophiles who can hear (or claim to hear) these imperfections.

Do you know anything about a special kind of digital tape that could replace the…

Do you know anything about a special kind of digital tape that could replace the CD?

Digital audiotapes have been around for a few years. These tapes store sound as digital information on a tape. Because of the digital recording and playback, the reproduction is almost perfect. The digital process involves an enormous amount of information each second; too much to be recorded in the conventional method used in cassette tapes. Instead, I think that a helical technique is used, in which information is written as diagonal stripes across the length of the passing tape. By writing a closely spaced series of these stripes, the DAT (digital audio tape) player uses much more of the tape’s surface than a standard cassette and stores much more information on that surface. I doubt that DAT tapes will replace CD’s because CD’s are so easy to mass-produce. DAT tapes must be recorded one at a time.

How are the binary numbers represented in the ridges of the CD?

How are the binary numbers represented in the ridges of the CD?

In principle, the binary numbers could be written as the presence or absence of ridges (i.e. a 1000 nanometer long ridge could be a 1 while a 1000 nanometer long flat area could be a 0). However, this technique has technical problems. The main problem is that the number “0” would be a long flat region (16 adjacent flat regions would be one 16000 nanometer flat region). If the flat region became too long, the CD wouldn’t be able to follow the track any more. So an encoding scheme is used to make sure that ridges and flat areas are never too long. They use a length-encoding scheme, where ridges of different lengths correspond to a short group of binary bits. Furthermore, a very extensive error correcting arrangement makes sure that the music can be read even if a great many bits are unreadable. About 25% of the CD’s surface is dedicated to this error correcting information.