Why do some CD players sound better than others even if the CD is seriously scra…

Why do some CD players sound better than others even if the CD is seriously scratched on the bottom half?

At this point, there should be very little difference between CD players that are playing perfect CD’s. They all create almost distortionless reproductions of the original sound. However, different players use different tracking techniques and optical systems and thus have different abilities to recover from imperfections in the CD.

Why do you need to separate the different polarizations of light?

Why do you need to separate the different polarizations of light?

Any light wave can be described in terms of horizontally and/or vertically polarized light. For most things, these two polarizations are unimportant. But when light reflects from surfaces or passes through certain materials, these polarizations become important. The charges in surfaces and materials do not always respond equally to the two polarizations of light. The two polarizations may even travel through very different paths (e.g. in the polarization beam splitter).

Will light going in two directions in the same space create destructive interfer…

Will light going in two directions in the same space create destructive interference?

In general, the answer is no—there won’t be large regions of space in which the two light waves cancel one another. That’s because, while the electric fields from the two waves do add to one another at each moment, those fields go in and out of phase with one another very rapidly as the waves pass and the end result is that they do not interfere with one another over broad expanses. However, there can be points or surfaces in space at which the electric fields from the waves at least partially cancel for extended periods of time and at which there is destructive interference. These points and surfaces are often observed in experiments with single frequency laser beams.

Although I have heard that CD players are on average better at reproducing sound…

Although I have heard that CD players are on average better at reproducing sound, I have also heard that the best sound quality can still be had from high end phonographs. To what extent is this true?

The digitization process does introduce some distortions into the sound signal, including aliasing (confusion about high frequencies) and quantization error (round-off errors in recording the softest sounds). However, these distortions should be so small or at such high frequencies that they should be inaudible. Still, there are always some audiophiles who can hear (or claim to hear) these imperfections.