Why does combining red, green, and blue light create white light?

Why does combining red, green, and blue light create white light? Is this just an accepted fact? — DM, Punta Gorda, Florida

Our eyes sense color by measuring the relative brightnesses of the red, green, and blue portions of the light spectrum. When all three portions of the spectrum are present in the proper amounts, we perceive white.

The color sensing cells in our eyes are known as cone cells and they can detect only three different bands of color. One type of cone cell is sensitive to light in the red portion of the spectrum, the second type is sensitive to the green portion of the spectrum, and the third type is sensitive to the blue portion of the spectrum.

Their sensitivities overlap somewhat, so light in the yellow and orange portions of the spectrum simultaneously affects both the red sensitive cone cells and the green sensitive ones. Our brains interpret color according to which of three cone cells are being stimulated and to what extent. When both our red sensors and our green sensors are being stimulated, we perceive yellow or orange.

That scheme for sensing color is simple and elegant, and it allows us to appreciate many of the subtle color variations in our world. But it means that we can’t distinguish between certain groups of lights. For example, we can’t distinguish between (1) true yellow light and (2) a carefully adjusted mixture of true red plus true green. Both stimulate our red and green sensors just enough to make us perceive yellow. Those groups of lights look exactly the same to us.

Similarly, we can’t distinguish between (3) the full spectrum of sunlight and (4) a carefully adjusted mixture of true red, true green, and true blue. Those two groups stimulate all three types of cone cells and make us perceive white. They look identical to us.

That the primary colors of light are red, green, and blue is the result of our human physiology and the fact that our eyes divide the spectrum of light into those three color regions. If our eyes were different, the primary colors of light would be different, too.

Many things in our technological world exploit mixtures of those three primary colors to make us see every possible color. Computer monitors, televisions, photographs, and color printing all make us see what they want us to see without actually reproducing the full light spectrum of the original. For example, if you used a light spectrum analyzer to study a flower and a photograph of that flower, you’d discover that their light spectra are different. Those spectra stimulate our eyes the same way, but the details of the spectra are different. We can’t tell them apart.

Does removing two tubes in a four-tube fluorescent fixture save energy?

Does the power consumption drop when a four-tube fluorescent fixture has either two tubes missing or two tubes that are burned out. If there is a drop in consumption, how significant is it? Is it cost effective to remove two tubes if you don’t need the lumens of four tubes? — M, Connecticut

Most four-tube fluorescent fixtures are effectively two separate two-tube units. They share the same ballast, but otherwise each pair of tubes is independent of the other. Removing one of those pairs from the fixture will save nearly half the energy and expense, and is a good idea if you don’t need the extra illumination.

The two tubes within a pair operate in series: current flowing as a discharge through the gas in one tube also flows through the gas in the other tube. That’s why they both go out simultaneously. Only one of them is actually dead, but since the dead one has lost its ability to sustain a discharge, it can’t pass any current on to its partner. Replacing the dead tube is usually enough to get the pair working again, at least for while.

Leaving dead tubes in a fixture isn’t the same as removing unnecessary tubes. Tubes often die slow, lingering deaths during which they sustain weak or flickering discharges that consume some energy without providing much light. Also, most fluorescent fixtures heat the electrodes at the ends of the tubes to start the discharge. During startup, the ballast runs an electric current through each electrode (hence the two metal contacts at each end of the tube) and the heated electrodes introduces electric charges into the gas so the discharge can start.

That heating current is only necessary during starting, but if the discharge never starts then the ballast may continue to heat the electrodes for days, weeks, or years. If you look at the ends of a tube that fails to start, you may see the electrodes glowing red hot. Because of that heater current, leaving a failed fluorescent tube in a fixture can be waste of energy and money. Be careful removing those tubes from the fixture—although they produce no light, they can still be hot at their ends.

Do fluorescent lamps really use less energy than incandescent bulbs?

I have been told, that incandescent light bulbs are being phased out to be replaced by fluorescent bulbs that use less energy. This will happen I think next year? Is that true? — CD, Abilene, Texas

Incandescent lightbulbs will be phased out beginning with 100-watt bulbs in 2012 and ending with 40-watt bulbs in 2014. The reason for this phase out is simple: incandescent lightbulbs are horribly energy inefficient.

Light is a form of energy, so you can compare the visible light energy emitted by any lamp to the energy that lamp consumes. According to that comparison, an incandescent lightbulb is roughly 5% efficient—a 100-watt incandescent bulb emits about 5 watts of visible light. In contrast, a fluorescent lamp is typically about 20% energy efficient—a 25-watt fluorescent lamp emits about 5 watts of visible light.

fluorescent lamp
incandescent lightbulbs

Another way to compare incandescent and fluorescent lamps is via their lumens per watt. The lumen is a standard unit of usable illumination and it incorporates factors such as how sensitive our eyes are to various colors of light. If you divide a light source’s light output in lumens by its power input in watts, you’ll obtain its lumens per watt.

For the incandescent lightbulb appearing at the left of the photograph, that calculation yields 16.9 lumens/watt. For the “long life” bulb at the center of the photograph, it give only 15.3 lumens/watt. And for the color-improved bulb on the right of the photograph, the value is only 12.6 lumens/watt. Our grandchildren will look at this photograph of long forgotten incandescent bulbs and be amazed that we could squander so much energy on lighting.

The fluorescent lamp in the other photograph is far more efficient. It produces more useful illumination than any of the three incandescent bulbs, yet it consumes just over a quarter as much power. Dividing its light out in lumens by its power consumption in watts yields 64.6 lumens/watts. It is 4 times as energy efficient as the best of the incandescent lightbulbs. Some fluorescent lamps are even more efficient than that.

Another feature to compare is life expectancy. Even the so-called “long life” incandescent predicts a 1500 hour life, which is only 15% of the predicted life for the fluorescent lamp (10,000 hours). Although the fluorescent costs more, it quickly pays for itself in energy use and less frequent replacement. You should recycle a fluorescent lamp because it does contain a tiny amount of mercury, but overall it’s a much more environmentally friendly light source.

Are there high voltages around fluorescent lamps?

Do ballasts of fluorescent light fixtures produce a high voltage arc that ionizes gases in the tube during start up? If so what sort of voltages are we talking about? — SC, Australia

A traditional fluorescent lamp needs a ballast to limit the current flowing through its gas discharge. That’s because gas discharges have strange electrical characteristics, most notably a regime of “negative” electrical resistance: the voltage drop across the discharge actually decreases as the current in the discharge increases. If you connect a gas discharge lamp to a voltage source without anything to limit the current and start the discharge, the current flowing through the lamp will rise essentially without limit and the lamp will quickly destroy itself. As a kid, I blew up several small neon lamps by connecting them directly to the power line without any current limiter. That was not a clever or safe idea, so don’t try it!

The standard current limiter for fluorescent lamps and other discharge lamps that are powered from 60-cycle (or 50-cycle) alternating current has been an electromagnetic coil known as a ballast. When that coil is in series with the discharge, the coil’s self-inductance limits how quickly the current flowing through the lamp can rise and therefore how much power the lamp can consume before the alternating current reverses direction. The discharge winks on and off with each current reversal and never draws more current than it can tolerate. Unfortunately, the lamp’s light also winks on and off and some people can see that flicker, especially with their peripheral vision.

Actually, the ballast usually has another job to do in a traditional fluorescent lamp: it acts as a transformer to provide the current needed to heat the electrode filaments at the ends of the lamp. Heating those electrodes helps drive electrons out of the metal and into the lamp’s gas so that the gas becomes electrically conducting. In total then, the ballast receives alternating current electric power from the power line and prepares it so that all the lamp filaments are heated properly and a limited current flows through the lamp from one electrode to the other.

In modern fluorescent lamps with heated electrodes, however, the role of the ballast has been usurped by a more sophisticated electronic power conditioning device. That device converts 60-cycle alternating current electric power into a series of electrical energy pulses, typically at about 40,000 pulses per second, and delivers them to the lamp. The lamp’s flicker is almost undetectable because it is so fast and the limited energy in each pulse prevents the discharge from consuming too much power. It’s a much better system. Compact fluorescent lamps use it exclusively.

So where might high voltage fit into this story? Well, there are some fluorescent lamps that don’t heat their electrodes with filaments. They rely on the discharge itself to drive electrons out of the electrodes and into the gas to sustain the discharge. But that begs the question: “how does such a lamp start its discharge?” It uses high voltage. Because of cosmic rays and natural radioactivity, gases always have some electric charges in them: ions and electrons. When the voltage difference between the two ends of the lamp becomes very large, the electric field in the lamp propels those naturally occurring ions and electrons into the constituents of the lamp violently enough to start the lamp’s discharge. The voltages needed to start these “cold cathode” lamps are typically in the low thousands of volts. For example, the cold cathode fluorescent lamps used in laptop computer displays start at about 2000 volts and then operate at much lower voltages.

Why do things such as sneakers, T-shirts, and nailpolish change color in the sun…

Why do things such as sneakers, T-shirts, and nailpolish change color in the sun? The only explanations I’ve found simple state that the molecules get excited in the sun.

Sunlight consists not only of light across the entire visible spectrum, but of invisible infrared and ultraviolet lights as well. The latter is probably what is causing the color-changing effects you mention.

Ultraviolet light is high-energy light, meaning that whenever it is emitted or absorbed, the amount of energy involved in the process is relatively large. Although light travels through space as waves, it is emitted and absorbed as particles known as photons. The energy in a photon of ultraviolet light is larger than in a photon of visible light and that leads to interesting effects.

First, some molecules can’t tolerate the energy in an ultraviolet photon. When these molecules absorb such an energetic photon, their electrons rearrange so dramatically that the entire molecule changes its structure forever. Among the organic molecules that are most vulnerable to these ultraviolet-light-induced chemical rearrangements are the molecules that are responsible for colors. The same electronic structural characteristics that make these organic molecules colorful also make them fragile and susceptible to ultraviolet damage. As a result, they tend to bleach white in the sun.

Second, some molecules can tolerate high-energy photons by reemitting part of the photon’s energy as new light. Such molecules absorb ultraviolet or other high-energy photons and use that energy to emit blue, green, or even red photons. The leftover energy is converted into thermal energy. These fluorescent molecules are the basis for the “neon” colors that are so popular on swimwear, in colored markers, and on poster boards. When you expose something dyed with fluorescent molecules to sunlight, the dye molecules absorbs the invisible ultraviolet light and then emit brilliant visible light.

What everyday household chemicals (cleaners, paints, detergents, etc.) contain l…

What everyday household chemicals (cleaners, paints, detergents, etc.) contain large enough amounts of phosphor to glow under black light?

Fluorescent paints and many laundry detergents contain fluorescent chemicals-chemicals that absorb ultraviolet light and use its energy to produce visible light. Fluorescent paints are designed to do exactly that, so they certainly contain enough “phosphor” for that purpose. Detergents have fluorescent dyes or “brighteners” added because it helps to make fabrics appear whiter. Aging fabric appears yellowish because it absorbs some blue light. To replace the missing blue light, the brighteners absorb invisible ultraviolet and use its energy to emit blue light.

Why does a shave that looks great under incandescent light look terrible under f…

Why does a shave that looks great under incandescent light look terrible under fluorescent light? And, for a woman, what light is best for putting on makeup? — JE

Illumination matters because your skin only reflects light to which it’s exposed. When you step into a room illuminated only by red light your skin appears red, not because it’s truly red but because there is only red light to reflect.

Ordinary incandescent bulbs produce a thermal spectrum of light with a “color temperature” of about 2800° C. A thermal light spectrum is a broad, featureless mixture of colors that peaks at a particular wavelength that’s determined only by the temperature of the object emitting it. Since the bulb’s color temperature is much cooler than that of the sun’s (5800° C), the bulb appears much redder than the sun and emits relatively little blue light. A fluorescent lamp, however, synthesizes its light spectrum from the emissions of various fluorescent phosphors. Its light spectrum is broad but structured and depends on the lamp’s phosphor mixture. The four most important phosphor mixtures are cool white, deluxe cool white, warm white, and deluxe warm white. These mixtures all produce more blue than an incandescent bulb, but the warm white and particularly the deluxe warm white tone down the blue emission to give a richer, warmer glow at the expense of a little energy efficiency. Cool white fluorescents are closer to natural sunlight than either warm white fluorescents or incandescent bulbs.

To answer your question about shaves: without blue light in the illumination, it’s not that easy to distinguish beard from skin. Since incandescent illumination is lacking in blue light, a shave looks good even when it isn’t. But in bright fluorescent lighting, beard and skin appear sharply different and it’s easy to see spots shaving has missed. As for makeup illumination, it’s important to apply makeup in the light in which it will be worn. Blue-poor incandescent lighting downplays blue colors so it’s easy to overapply them. When the lighting then shifts to blue-rich fluorescents, the blue makeup will look heavy handed. Some makeup mirrors provide both kinds of illumination so that these kinds of mistakes can be avoided.

I am interested in experimenting with colored flames, maybe by adding a substanc…

I am interested in experimenting with colored flames, maybe by adding a substance to the flame. Please tell me how to do it and with what kind of substances. — M

You can produce colored flames by adding various metal salts to the burning materials. That’s what’s done in fireworks. These metal salts decompose when heated so that individual metal atoms are present in the hot flame. Thermal energy in the flame then excites those atoms so that their electrons shift among the allowed orbits or “orbitals” and this shifting can lead to the emission of particles of light or “photons”. Since the orbitals themselves vary according to which chemical element is involved, the emitted photons have specific wavelengths and colors that are characteristic of that element.

To obtain a wide variety of colors, you’ll need a wide variety of metal salts. Sodium salts, including common table salt, will give you yellow light—the same light that’s produced by sodium vapor lamps. Potassium salts yield purple, copper and barium salts yield green, strontium salts yield red, and so on. The classic way to produce a colored flame is to dip a platinum wire into a metal salt solution and to hold the wire in the flame. Since platinum is expensive, you can do the same trick with a piece of steel wire. The only problem is that the steel wire will burn eventually.

When an electron hits a neon atom, does it transfer its energy to the atom and l…

When an electron hits a neon atom, does it transfer its energy to the atom and lose its own forever?

Most of the collisions between an electron and a neon atom are completely elastic—the electron bounces perfectly from the neon atom and retains essentially all of its kinetic energy. But occasionally the electron induces a structural change in the neon atom and transfers some of its energy to the neon atom. In such a case, the electron rebounds weakly and retains only a fraction of its original kinetic energy. The missing energy is left in the neon atom, which usually releases that energy as light.

Why do only certain orbitals exist in an atom?

Why do only certain orbitals exist in an atom?

Because the electrons in an atom move about as waves, they can follow only certain allowed orbits that we call orbitals. This limitation is equivalent to the case of a violin string—it can only vibrate at certain frequencies. If you try to make a violin string vibrate at the wrong frequency, it won’t do it. That’s because the string vibrates in a wave-like manner and only certain waves fit properly along the strong. Similarly, the electron in an atom “vibrates” in a wave-like manner and only certain waves fit properly around the nucleus.