What happens if you start the microwave oven with nothing inside?

What happens if you start the microwave oven with nothing inside?

The magnetron creates microwaves that travel into the cooking chamber and should be absorbed there. If there is no food (or rather no water-containing food), those microwaves will not be absorbed and will eventually find their way back to the magnetron. Eventually the magnetron will absorb as many microwaves as it emits. This situation is hard on the magnetron, which works best when it has very little radiation returning to it. That’s why you should never run a microwave empty for more than a second or two.

Are microwaves harmful to you? Is eating microwaved food harmful?

Are microwaves harmful to you? Is eating microwaved food harmful?

Microwaves can heat your body by adding thermal energy to the water molecules in you. This heating can be damaging if it’s not controlled. Most of your body is protected from slow heating because your blood carries heat away from any local hot spots so that you warm evenly. However there are a few places that aren’t cooled by your circulation and can heat up locally enough to denature the protein molecules and cause biological injury. The cornea of your eye is a good example. It can be heated and damaged because it’s not cooled well. That’s why you must be careful not to look into a strong beam of microwaves. As for microwaved food, the only effect of cooking with microwaves is hot food. There is no “radiation damage” or “radioactivity,” as there might be with x-ray or gamma radiation. Some foods should not be cooked in a microwave only because the uneven heating may allow certain parts to become too hot. Those parts may burn you when you eat them or they may suffer thermal damage that diminishes their nutritional value.

Why do microwave ovens cook so rapidly?

Why do microwave ovens cook so rapidly?

When you put solid food (a potato, not soup) into a conventional oven, the heat flows slowly into the center of that food. This heat must work its way into the food via thermal conduction, in which adjacent atoms and molecules transfer their motional energies in a long bucket-brigade process. The last part of a potato to become hot is its center. However, in a microwave oven, the microwaves travel well into the solid food and deposit their energy everywhere. The potato cooks throughout at a relatively even rate. The actual amount of heat and energy involved in conventional and microwave cooking is about the same. However, the microwaves can heat the food throughout without having to wait for the slow process of conduction to carry it inward from the food’s surface.

Can microwaves be emitted to travel in one direction?

Can microwaves be emitted to travel in one direction?

Yes. Like all electromagnetic waves, microwaves can be focused and concentrated in a particular direction. That is exactly what microwave dish antennas (e.g., satellite dishes) do. At the transmitter, they focus the microwaves emitted by a smaller antenna so that those microwaves travel as a parallel beam. At the receiver, they focus the parallel beam of microwaves onto a smaller antenna. You can think of the microwaves as very long wavelength light waves, so that anything you can do with light (e.g., focus it, form images with it, or bend it with optical devices), you can also do with microwaves. The only problem is that the optical elements you use for microwaves must be larger, because the microwaves have longer wavelengths.

Why do some microwave ovens not seem to have a metal surface in the cooking area…

Why do some microwave ovens not seem to have a metal surface in the cooking area?

The cooking chamber of a microwave oven is always metallic. Even the glass door has a metal grid across it to keep the microwaves inside. This metal chamber may be coated with paint or plastic but it is there nonetheless. Without it, the microwaves would leak out and the oven would be hazardous and inefficient. It would cook objects throughout the kitchen.

How can microwaves heat something? Radio waves don’t warm things very much.

How can microwaves heat something? Radio waves don’t warm things very much.

The electric field of a microwave flips back and forth at just about the right frequency to have the largest effect on water molecules. The water molecules try to follow the reversing electric field and, in doing so, become hotter and hotter. Radio waves flip too slowly to have very much effect on water. Furthermore, the microwaves in an oven are far more intense than the radio waves that we’re used to have around us so that common radio waves just don’t do very much cooking.

You said an ice cube will not get hot in the microwave because the molecules won…

You said an ice cube will not get hot in the microwave because the molecules won’t “flip”. If this is so, then why do frozen foods cook in the microwave?

As noted previously, the water molecules in frozen foods are not all bound up perfectly inside ice crystals. As long as there are a few relatively mobile water molecules, even frozen food will eventually absorb enough energy to melt. Once that happens, the food can cook easily. Of course, the melting process is frequently very non-uniform so that food comes out with hot and cold regions. In general, frozen food cooked in a microwave is not very satisfying.

How do metal rods short out the microwaves?

How do metal rods short out the microwaves?

If you arrange a metal rod so that it’s parallel to a microwave’s electric field, the microwave will push electric charges up and down that rod. This moving charge will waste some of the microwave’s energy by creating heat in the rod. But the main effect will be that the rod will reflect or scatter the microwave. The moving charge will emit its own microwave and this new microwave will interfere with the original one.

How does a microwave oven defrost foods? Doesn’t it only work with water, not ic…

How does a microwave oven defrost foods? Doesn’t it only work with water, not ice?

In any frozen food, there are some water molecules that are relatively free to turn about. These molecules may be at the surfaces of ice crystals or sitting on the surface of food particles. These water molecules can absorb microwaves and heat. However, the heating is very uneven because as soon as any water crystal absorbs enough heat to melt, the resulting liquid water will begin to absorb microwaves much more strongly. That is why defrosting must be done slowly. Then the microwave deposited heat will have time to flow through the food and melt it uniformly. Otherwise, you can end up with boiling hot spots mixed together with frozen icy spots.

How does the resonant cavity in the magnetron work?

How does the resonant cavity in the magnetron work?

When it’s active, the magnetron’s cavity has electric charge sloshing back and forth along its tines. The charge moves at a frequency determined by the shape and size of the cavity and these are carefully controlled so that the cavity’s natural resonance frequency is 2.45 gigahertz. To keep the charge sloshing, the magnetron adds negative charge from a hot filament wire located in the center of the cavity. Electrons flowing off of this wire are steered toward the negative tines by a magnetic field. As a result, the charges continue to slosh back and forth indefinitely. A small wire connected inside the magnetron extracts some of the energy in the magnetron and converts it into microwaves outside the magnetron. This wire acts as an antenna. The antenna is located in the pipe that carries the microwaves to the cooking chamber.