How does the carbon in an organic material affect the flow of light through it? — TM
When light passes into a material, it interacts primarily with the negatively charged electrons in that material. Since light consists in part of electric fields and electric fields push on charged particles, light pushes on electrons. If the electrons in a material can’t move long distances and can’t shift from one quantum state to another as the result of the light forces, then all that will happen to the light as it passes through the material is that it will be delayed and possibly redirected. But if the electrons in the material can move long distance or shift between states, then there is the chance that the light will be absorbed by the material and that the light energy will become some other type of energy inside the material.
Which of these possibilities occurs in a particular organic material depends on the precise structure of that material. Carbon atoms can be part of transparent organic materials, such as sugar, or of opaque organic materials, such as asphalt. The carbon atoms and their neighbors determine the behaviors of their electrons and these electrons in turn determine the optical properties of the materials.