When you suspended the Ping-Pong ball in the stream of air from the pipe, why di…

When you suspended the Ping-Pong ball in the stream of air from the pipe, why did the ball spin? The same thing happened to the two flat pieces of plastic that were held together when air flowed out between them.

The Ping-Pong ball spun because the viscous drag forces it experienced weren’t equal on all sides. As we’ll see shortly, there are a variety of different drag forces and they can act at different locations on an object. In the case of viscous drag, it acts locally at each point where air slides across the surface of the object. Since the airflow from the pipe wasn’t perfectly uniform, the air swept past the ball faster in some places than it did in others. These differences in airspeed became most significant when the ball began to drift away from the airstream—the sudden increase in airspeed on the side of the ball nearest the center of the airstream is what created the low pressure that allowed the surrounding air to push the ball back toward the center of the airstream. But minor differences in airspeed also exerted unbalanced torques on the ball and caused it to spin. Similar flow imperfections between the two plates created differences in viscous drag and exerted torques on the two plates. That’s why they began to spin around slightly.

Why does dust settle on the moving blades of a fan?

Why does dust settle on the moving blades of a fan?

As the air flows across the blades of a fan, the dust particles in it occasionally pierce through the airflow and hit the blades. The same sort of process occurs when a bug hits the windshield of a car; the bug would normally follow the airflow but its inertia prevents it from moving out of the way quickly enough and it hit. Once a dust particle hits the fan blades, there isn’t much to remove it. The air moves remarkably slowly right at the surface of the fan because that surface layer of air experiences lots of viscous drag. Even though the air is moving swiftly only a few millimeters away, the air right on the fan blade is almost stationary. Thus the dust can cling to the blade indefinitely.

For aerosol sprays such as Lysol, are they essentially creating “dustlike” par…

For aerosol sprays such as Lysol, are they essentially creating “dustlike” particles that float in the air?

Yes, except that the word “float” isn’t what you really mean. An aerosol is a suspension of fine solid or liquid particles in a gas. What holds those particles up against their downward weights isn’t the buoyant force—these particles are much more dense than the gas that surrounds them. Instead, it’s viscous drag. When the particles begin to fall downward through the gas, they experience such large upward viscous drag forces that they reach terminal velocity at only about 1 millimeter-per-second. The slightest breeze carries the particles with it so that they rarely have a chance to settle to the floor because of gravity. In an aerosol spray, the particles are carried forward by the gas emerging from the bottle and they hit the surfaces in front of the bottle.