How does a hydrogen bomb work? How does it differ from the atomic bomb besides the simple difference of fusion and fission? — KS, Lake Oswego, OR
A hydrogen bomb uses the heat from a fission bomb (a uranium or plutonium bomb, sometimes called an atomic bomb) to cause hydrogen nuclei to collide and fuse, thereby releasing enormous amounts of energy. While a fission bomb can initiate its nuclear reactions at room temperature, fusion reactions won’t begin until the nuclei involved have been heated to enormous temperatures. That’s because the nuclei are all positively charged and repel one another strongly up until the moment they stick. Only at enormous temperatures (typically hundreds of millions of degrees) will the nuclei collide hard enough to stick and release their nuclear energy. A typical hydrogen bomb (also called a fusion bomb or thermonuclear bomb) uses a fission trigger to initiate fusion in a mixture of deuterium and tritium, the heavy isotopes of hydrogen. These neutron-rich isotopes fuse much more easily than normal hydrogen. Because deuterium and tritium are both gases, and because tritium is unstable and gradually decays into the light isotope of helium, some hydrogen bombs form the tritium during the explosion by exposing lithium nuclei to neutrons from the fission trigger. Thus the “fuel” for many thermonuclear bombs is actually lithium deuteride, which becomes a mixture of tritium and deuterium during the explosion and then becomes various helium nuclei through fusion.