What features of the fuel rods used in reactors prevent them from becoming explosive? — JG, Bateman, Australia
A nuclear reactor operates just below critical mass so that each radioactive decay in its fuel rods induces a large but finite number of subsequent fissions. Since each chain reaction gradually weakens away to nothing, there is no danger that the fuel will explode. But operating just below critical mass is a tricky business and it involves careful control of the environment around the nuclear fuel rods. The operators use neutron absorbing control rods to dampen the chain reactions and keep the fuel just below critical mass.
Fortunately, there are several effects that make controlled operation of a reactor relatively easy. Most importantly, some of the neutrons involved in the chain reactions are delayed because they come from radioactive decay processes. These delayed neutrons slow the reactor’s response to changes—the chain reactions take time to grow stronger and they take time to grow weaker. As a result, it’s possible for a reactor to exceed critical mass briefly without experiencing the exponentially growing chain reactions that we associate with nuclear explosions. In fact, the only nuclear reactor that ever experienced these exponentially growing chain reactions was Chernobyl. That flawed and mishandled reactor went so far into the super-critical regime that even the neutron delaying effects couldn’t prevent exponential chain reactions from occurring. The reactor superheated and ripped itself apart.