You said that microwaves heat food by twisting water molecules back and forth and having those water molecules rub against one another to experience a molecular form of “friction.” Since vibrating molecules are the fundamental manifestation of heat, why is the friction necessary at all? — GS, Kanata, Canada
While it’s true that microwaves twist water molecules back and forth, this twisting alone doesn’t make the water molecules hot. To understand why, consider the water molecules in gaseous steam: microwaves twist those water molecules back and forth but they don’t get hot. That’s because the water molecules beginning twisting back and forth as the microwaves arrive and then stop twisting back and forth as the microwaves leave. In effect, the microwaves are only absorbed temporarily and are reemitted without doing anything permanent to the water molecules. Only by having the water molecules rub against something while they’re twisting, as occurs in liquid water, can they be prevented from remitting the microwaves. That way the microwaves are absorbed and never remitted—the microwave energy becomes thermal energy and remains behind in the water.
Visualize a boat riding on a passing wave—the boat begins bobbing up and down as the wave arrives but it stops bobbing as the wave departs. Overall, the boat doesn’t absorb any energy from the wave. However, if the boat rubs against a dock as it bobs up and down, it will converts some of the wave’s energy into thermal energy and the wave will have permanently transferred some of its energy to the boat and dock.