If one metric ton of antimatter comes into contact with one metric ton of matter…

If one metric ton of antimatter comes into contact with one metric ton of matter, how much energy would be released? — TC

Since the discovery of relativity, people have recognized that there is energy associated with rest mass and that the amount of that energy is given by Einstein’s famous equation: E=mc2. However, the energy associated with rest mass is hard to release and only tiny fractions of it can be obtained through conventional means. Chemical reactions free only parts per billion of a material’s rest mass as energy and even nuclear fission and fusion can release only about 1% of it. But when equal quantities of matter and antimatter collide, it’s possible for 100% of their combined rest mass to become energy. Since two metric tons is 2000 kilograms and the speed of light is 300,000,000 meters/second, the energy in Einstein’s formula is 1.8×1020 kilogram-meters2/second2 or 1.8×1020 joules. To give you an idea of how much energy that is, it could keep a 100-watt light bulb lit for 57 billion years.

Leave a Reply