If a microwave oven door reflects microwaves, why doesn’t everything?

If microwaves are reflected by the door on a microwave oven, how are they able to pass tens of miles from mobile phone transmitters through solid walls and into our mobile phones? — JW, Belfast, Northern Ireland

The door of a microwave oven is carefully designed to reflect microwaves so that they can’t escape from the oven. That mesh that you see in the door isn’t plastic, it’s metal. Metal surfaces reflect microwaves and, even though the mesh has holes in it to allow you to observe the food, it acts as a perfect mirror for the microwaves. Basically, the holes are so much smaller than the 12.2-cm wavelength of the 2.45-GHz microwave that the microwave cannot propagate through the holes. Electric currents flow through the metal mesh as the microwave hits it and those currents re-radiate the microwave in the reflected direction. Since the holes aren’t big enough to disrupt that current flow, the mesh reflects the microwaves as effectively as a solid metal surface would.

As for how your cell phone and the cell tower can communicate for miles despite all the intervening stuff, it’s actually a challenge. The microwaves from your phone and the tower are partly absorbed and partly reflected each time they encounter something in your environment, so they end up bouncing their way through an urban landscape. That’s why cell towers have multiple antennas and extraordinarily sophisticated transmitting and receiving equipment. They are working like crazy to direct their microwaves at your phone as effectively as possible and to receive the microwaves from your phone even though those waves are very weak and arrive in bits and pieces due to all the scattering events they experience during their passage. Indoor cell phone reception is typically pretty poor unless the building has its own internal repeaters or microcells.

There are times when you don’t get any reception because the microwaves from the cell phone and tower are almost completely absorbed or reflected. For example, if you were to stand in a metalized box, the microwaves from your cell phone would be trapped in the box and would not reach the cell tower. Similarly, the microwaves from the cell tower would not reach you. Moreover, the box doesn’t have to be fully metalized; a metal mesh or a transparent conductor is enough to reflect the microwaves. Transparent conductors are materials that conduct relatively low-frequency currents but don’t conduct currents at the higher frequencies associated with visible light. They’re used in electronic displays (e.g., computer monitors and digital watches) and in energy-conserving low-E windows. I haven’t experimented with cell phone reception near low-E windows, but I’m eager to give it a try. I suspect that a room entirely walled by low-E windows will have lousy cell phone reception.

Leave a Reply