How can I describe a polymer to a group of 4th grade students? — M, Hanover, Massachusetts
Polymers are simply giant molecules that were formed by sticking together a great many small molecules. The properties of a given polymer depend on which small molecules it contains and how those molecules were assembled. To help your students visualize this idea, I’d go right to two familiar models: snap-together beads (“pop beads”) and spaghetti.
Snap-together beads are a perfect model for many polymers. As individual beads, you can pour them like a liquid and move your hand through them easily. But once you begin snapping them together into long chains, they develop new properties that weren’t present in the beads themselves. For example, they get tangled together and don’t flow so easily any more.
That emergence of new properties is exactly what happens in many polymers. For example, ethylene is a simple gas molecule, but if you stick ethylene molecules together to form enormous chains, you get polyethylene (more specifically, high-density polyethylene, recycling number 2, milk-jug plastic). Ethylene molecules are called “monomers” and the giant chains that are made from them are called “polymers”.
Polyethylene retains some of the chemical properties of its monomer units, namely that it doesn’t react with most other chemicals and almost nothing sticks to it. But polyethylene also has properties that the monomer units didn’t have: polyethylene is a sturdy, flexible solid. You can stretch it without breaking it. That happens because you can make its polymer molecules slide across one another, but you can’t untangle the tangles.
To get an idea of what it’s like to work with molecules that can slide through each other but may not be able to untangle themselves, shift over to cooked and drained spaghetti. If you dice the spaghetti up into tiny pieces, it’s like the monomers—nothing to tangle. You can pour the tiny pieces like a liquid. But trying doing that with a bowl of long spaghetti noddles. They’re so tangled up that they can’t do much. In fact, if you let the water dry up to some extent, the stuff will become a sturdy, flexible solid, just like HDPE!
There is much more to say about polymers, for example, they’re not all simple straight chains and some of them cross-link so that they can’t untangle no matter what you do. But this should be a good start. Polymer molecules are everywhere, including in paper and hair. Paper is primarily cellulose, giant molecules built out of sugar molecules. Hair is protein polymer, giant molecules built out of protein monomer units. They’re both sturdy, stretchy, flexible solids and they’re both softened by water—which acts as a molecular lubricant for the polymer molecules. Not all polymers are sturdy, or stretchy, or flexible, but a good many are.