Do ballasts of fluorescent light fixtures produce a high voltage arc that ionizes gases in the tube during start up? If so what sort of voltages are we talking about? — SC, Australia
A traditional fluorescent lamp needs a ballast to limit the current flowing through its gas discharge. That’s because gas discharges have strange electrical characteristics, most notably a regime of “negative” electrical resistance: the voltage drop across the discharge actually decreases as the current in the discharge increases. If you connect a gas discharge lamp to a voltage source without anything to limit the current and start the discharge, the current flowing through the lamp will rise essentially without limit and the lamp will quickly destroy itself. As a kid, I blew up several small neon lamps by connecting them directly to the power line without any current limiter. That was not a clever or safe idea, so don’t try it!
The standard current limiter for fluorescent lamps and other discharge lamps that are powered from 60-cycle (or 50-cycle) alternating current has been an electromagnetic coil known as a ballast. When that coil is in series with the discharge, the coil’s self-inductance limits how quickly the current flowing through the lamp can rise and therefore how much power the lamp can consume before the alternating current reverses direction. The discharge winks on and off with each current reversal and never draws more current than it can tolerate. Unfortunately, the lamp’s light also winks on and off and some people can see that flicker, especially with their peripheral vision.
Actually, the ballast usually has another job to do in a traditional fluorescent lamp: it acts as a transformer to provide the current needed to heat the electrode filaments at the ends of the lamp. Heating those electrodes helps drive electrons out of the metal and into the lamp’s gas so that the gas becomes electrically conducting. In total then, the ballast receives alternating current electric power from the power line and prepares it so that all the lamp filaments are heated properly and a limited current flows through the lamp from one electrode to the other.
In modern fluorescent lamps with heated electrodes, however, the role of the ballast has been usurped by a more sophisticated electronic power conditioning device. That device converts 60-cycle alternating current electric power into a series of electrical energy pulses, typically at about 40,000 pulses per second, and delivers them to the lamp. The lamp’s flicker is almost undetectable because it is so fast and the limited energy in each pulse prevents the discharge from consuming too much power. It’s a much better system. Compact fluorescent lamps use it exclusively.
So where might high voltage fit into this story? Well, there are some fluorescent lamps that don’t heat their electrodes with filaments. They rely on the discharge itself to drive electrons out of the electrodes and into the gas to sustain the discharge. But that begs the question: “how does such a lamp start its discharge?” It uses high voltage. Because of cosmic rays and natural radioactivity, gases always have some electric charges in them: ions and electrons. When the voltage difference between the two ends of the lamp becomes very large, the electric field in the lamp propels those naturally occurring ions and electrons into the constituents of the lamp violently enough to start the lamp’s discharge. The voltages needed to start these “cold cathode” lamps are typically in the low thousands of volts. For example, the cold cathode fluorescent lamps used in laptop computer displays start at about 2000 volts and then operate at much lower voltages.