How does one create an electric or magnetic field?

How does one create an electric or magnetic field?

The simplest way to make these fields is with electric charges (for an electric field) or with magnets (for a magnetic field). Charges are naturally surrounded by electric fields and magnets are naturally surrounded by magnetic fields. But fields themselves can create other fields by changing with time. That’s how the fields in a light wave work—the electric field in the light wave changes with time and creates the magnetic field and the magnetic field changes with time and creates the electric field. This team of fields can travel through space without any charge or magnets nearby.

If electrons can’t change levels, how can a photoconductor help them change one …

If electrons can’t change levels, how can a photoconductor help them change one level to another?

In a metal, electrons can easily shift from one level to another empty level because the levels are close together in energy. In a full insulator, it’s very difficult for the electrons to shift from one level to an empty level because all of the empty levels are far above the filled levels in energy. In a photoconductor, the empty levels are modestly above the filled levels in energy, so a modest amount of energy is all that’s needed to shift an electron. This energy can be supplied by a particle or “photon” of light. An illuminated photoconductor conducts electricity.

Can the electric current be taken out of the metal where the charge will not car…

Can the electric current be taken out of the metal where the charge will not carry?

While charges can move freely through a metal, allowing the metal to carry electric current, it’s much harder for charges to travel outside of a conductor. Charges can move through the air or through plastic or glass, but not very easily. It takes energy to pull the charges out of a metal and allow them to move through a non-metal. Most of the time, this energy requirement prevents charges from moving through insulators such as plastic, glass, air, and even empty space.

In alternating current, current reverses directions rapidly between the two wire…

In alternating current, current reverses directions rapidly between the two wires, white and black. Why is it that only the black wire is “hot”?

When you complete a circuit by plugging an appliance into an electrical outlet, current flows out one wire to the appliance and returns to the electric company through the other wire. With alternating current, the roles of the two wires reverse rapidly, so that at one moment current flows out the black wire to the appliance and moments later current flows out the white wire to the appliance. But the power company drives this current through the wires by treating the black wire specially—it alternately raises and lowers the electrostatic potential or voltage of the black wire while leaving the voltage of the white wire unchanged with respect to ground. When the voltage of the black wire is high, current is pushed through the black wire toward the appliance and returns through the white wire. When the voltage of the black wire is low, current is pulled through the black wire from the appliance and is replaced by current flowing out through the white wire.

The white wire is rather passive in this process because its voltage is always essentially zero. It never has a net charge on it. But the black wire is alternately positively charged and then negatively charged. That’s what makes its voltage rise and fall. Since the black wire is capable of pushing or pulling charge from the ground instead of from the white wire, you don’t want to touch the black wire while you’re grounded. You’ll get a shock.

What is heat? What actually flows from a hot body to a cold body?

What is heat? What actually flows from a hot body to a cold body? — AW, Pakistan

Heat is thermal energy that is flowing from one object to another. While several centuries ago, people thought heat was a fluid, which they named “caloric,” we now know that it is simply energy that is being transferred. Heat moves via several mechanisms, including conduction, convection, and radiation. Conduction is the easiest to visualize—the more rapidly jittering atoms and molecules in a hotter object will transfer some of their energy to the more slowly jittering atoms in molecules in a colder object when you touch the two objects together. Even though no atoms or molecules are exchanged, their energy is. In convection, moving fluid carries thermal energy along with it from one object to another. In this case, there is material exchanged although usually only temporarily. In radiation, the atoms and molecules exchange energy by sending thermal radiation back and forth. Thermal radiation is electromagnetic waves and includes infrared light. A hotter object sends more infrared light toward a colder object than vice versa, so the hotter object gives up thermal energy to the colder object.

Is hydroplaning a form of sliding friction?

Is hydroplaning a form of sliding friction?

Not exactly. Sliding friction refers to the situation in which two surfaces slide across one another while touching. In hydroplaning, the two surfaces are sliding across one another, but they aren’t touching. Instead, they’re separated by a thin layer of trapped water. While hydroplaning still converts mechanical energy into thermal energy, just as sliding friction does, the lubricating effect of the water dramatically reduces the energy conversion. That’s why you can hydroplane for such a long distance on the highway; there is almost no slowing force at all.

Dan Barker, one of my readers, informed me of a NASA study showing that there is a minimum speed at which a tire will begin to hydroplane and that that speed depends on the square root of the tire pressure. Higher tire pressure tends to expel the water layer and prevent hydroplaning, while lower tire pressure allows the water layer to remain in place when the vehicle is traveling fast enough. As Dan notes, a large truck tire is typically inflated to 100 PSI and resists hydroplaning at speed of up to about 100 mph. But a passanger car tire has a much lower pressure of about 32 PSI and can hydroplane at speeds somewhat under 60 mph. That’s why you have to be careful driving on waterlogged pavement at highway speeds and why highway builders carefully slope their surfaces to shed rain water quickly.