When electricity comes out of the wall and through a lamp, where does the circuit loop complete? Does the circuit go all the way back to the power plant? — J, Florida
The electric circuit that powers your lamp extends only as far as a nearby transformer. That transformer is located somewhere near your house, probably as a cylindrical object on a telephone pole down the street or as a green box on a side lawn a few houses away.
A transformer conveys electric power from one electric circuit to another. It performs this feat using several electromagnetic effects associated with changing electric currents—changes present in the alternating current of our power grid. In this case, the transformer is moving power from a high-voltage neighborhood circuit to a low-voltage household circuit.
For safety, household electric power uses relatively low voltages, typically 120 volt in the US. But to deliver significant amounts of power at such low voltages, you need large currents. It’s analogous to delivering hydraulic power at low pressures; low pressures are nice and safe, but you need large amounts of hydraulic fluid to carry much power. There is a problem, however, with sending low voltage electric power long distances: it’s inefficient because wires waste power as heat in proportion to the square of the electric current they carry. Using our analogy again, sending hydraulic power long distances as a large flow of hydraulic fluid at low pressure is wasteful; the fluid will rub against the pipes and waste power as heat.
To send electric power long distances, you do better to use high voltages and small currents (think high pressure and small flows of hydraulic fluid). That requires being careful with the wires because high voltages are dangerous, but it is exactly how electric power travels cross-country in the power grid: very high voltages on transmission lines that are safely out of reach.
Finally, to move power from the long-distance high-voltage transmission wires to the short-distance low-voltage household wires, they use transformers. The long-distance circuit that carries power to your neighborhood closes on one side of the transformer and the short-distance circuit that carries power to your lamp closes on the other side of the transformer. No electric charges pass between those two circuits; they are electrically insulated from one another inside the transformer. The electric charges that are flowing through your lamp go round and round that little local circuit, shuttling from the transformer to your lamp and back again.