What is the difference between the magnetic and electric ballasts used in fluore…

What is the difference between the magnetic and electric ballasts used in fluorescent lights?

Fluorescent lights work by sending an electric current through a vapor of mercury atoms in what is known as an electric discharge. Unfortunately, electric discharges are very unstable—they are hard to start and, once started, tend to draw more and more current until they overheat and damage their containers and power sources. Thus a fluorescent light needs some device to control the flow of current through its discharge. Since normal fluorescent lamps are powered by alternating current—that is, the current passing through the discharge stops briefly and then reverses direction 120 times each second in the United States and 100 times each second in many other countries (60 or 50 full cycles of reversal, over and back, each second respectively)—the current control device only needs to keep the current under control for about 1/120 of a second. After that the current will reverse and everything will start over.

Older style fluorescent lights use a magnetic ballast to control the current. This ballast consists essentially of a coil of wire around a core of iron. As current flows through the wire, it magnetizes the iron. Because energy is required to magnetize the iron, the presence of the iron inside the coil of wire slows down the current when it first appears in the wire by drawing energy out of that current. This effect, typical of devices known to scientists and engineers as “inductors”, prevents the current passing through the ballast and then through the discharge from increasing too rapidly once it starts. The magnetic ballast is able to slow the current rise through the fluorescent lamp long enough for the alternating current to begin reversing directions. In fact, as the current in the power line begins to reverse, the ballast begins to get rid of the energy stored in its magnetized core. This energy is used to keep the discharge going longer than it would on its own. The ballast thus smoothes out the discharge so that it stays under control and emits an almost steady amount of light.

Modern electronic ballasts still control the current through the discharge, but they use electronic components to achieve this control. Just as an electronic dimmer switch can control the current through an incandescent light bulb in order to adjust the bulb’s brightness, such electronic devices can control the current passing through the discharge in a fluorescent lamp to keep that current from growing dangerously large.

Leave a Reply